
Prototype Kernel Documentation
Release 0.0.1

Jesper Dangaard Brouer

Nov 22, 2018





Contents

1 Documentation 3
1.1 Compiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Prototype Kernel 5
2.1 XDP and eBPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Prototype Kernel own documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Linux Networking Subsystem 7
3.1 XDP - eXpress Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Linux Memory Management Subsystem 23
4.1 The page_pool documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 eBPF - extended Berkeley Packet Filter 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Blogposts, Reports and Write-ups 41
6.1 Eval Generic netstack XDP patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Indices and tables 53

i



ii



Prototype Kernel Documentation, Release 0.0.1

This project and GitHub repository is meant for speeding up Linux Kernel development work, this also includes
Documentation. The directory layout tries to keep close to the Kernel directory layout. This helps when/if upstreaming
the work.

Contents:

Contents 1

https://github.com/netoptimizer/prototype-kernel


Prototype Kernel Documentation, Release 0.0.1

2 Contents



CHAPTER 1

Documentation

This documentation is available at: prototype-kernel.readthedocs.io

Files in this Documentation/ directory is (like the kernel) based on reStructuredText files and Sphinx can be used for
generating pretty documentation. Just like this documentation is being auto-generated on Read The Docs.

1.1 Compiling

To generate pretty Sphinx documentation locally simply run

make html

The generated output will be located in _build/html/index.html.

3

https://prototype-kernel.readthedocs.io
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/Documentation
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://www.sphinx-doc.org/
https://prototype-kernel.readthedocs.io
http://www.sphinx-doc.org/


Prototype Kernel Documentation, Release 0.0.1

4 Chapter 1. Documentation



CHAPTER 2

Prototype Kernel

This documentation is for how to use the prototype-kernel project itself.

2.1 XDP and eBPF

This github repository also contains samples for XDP and eBPF in the directory samples/bpf/. The build process is
different. Simply run make in the directory. Also see XDP/eBPF build environment.

2.2 Prototype Kernel own documentation

The prototype-kernel project is meant for compiling kernel modules outside the normal kernel git tree, but still using
the kernels make system.

The purpose is getting a separate git development tree for developing and refining your kernel module or Documenta-
tion over time, before pushing it upstream for the Linux Kernel.

Contents:

2.2.1 Prototype Kernel build process

In the kernel/ directory we try to keep close to the kernel directory layout, in the hopes that it will make it easier,
when posting/proposing these changes upstream.

Note: It is a pre-requisite that you have a developement kernel tree available for compiling against (or install your
distributions kernel-devel package).

5

https://github.com/netoptimizer/prototype-kernel
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://github.com/netoptimizer/prototype-kernel


Prototype Kernel Documentation, Release 0.0.1

Compiling modules

To compile your modules simply type make in the kernel directory.

The Makefile tries to detect the kernel directory to compile against by following the running kernels build symlink
in:

/lib/modules/`uname -r`/build/

To compile against another (specific) kernel tree use:

make kbuilddir=~/git/kernel/net-next/

Notice look in the Kbuild files, they define and control which modules are compiled, also see the .config file.

Push to remote host

Q: Want to compile locally and push the binary modules to a remote host. A: Yes, this is supported.

The Makefile target “push_remote” uploads the kernel module to a remote host. (You need to setup SSH-keys to SSH
allow root logins.)

Usage example:

make push_remote kbuilddir=~/git/kernel/net-next/ HOST=192.168.122.49

If you want to run this manually call the script directly:

./scripts/push_remote.sh 192.168.122.49

Enable/disable modules

It can be practical to allow manual enable/disable of which modules are getting build. This is supported by locally
adjusting .config. On first run the content is based on config.default.

This feature is useful when developing against API’s that have not been included the mainline kernel yet. See CON-
FIG_SLAB_BULK_API=m for an example.

6 Chapter 2. Prototype Kernel



CHAPTER 3

Linux Networking Subsystem

This is the top-level documentation for the Linux Networking subsystem.

Contents:

3.1 XDP - eXpress Data Path

This is the top-level XDP documentation tree.

Contents:

3.1.1 Introduction

What is XDP?

XDP or eXpress Data Path provides a high performance, programmable network data path in the Linux kernel. XDP
provides bare metal packet processing at the lowest point in the software stack. Much of the huge speed gain comes
from processing RX packet-pages directly out of drivers RX ring queue, before any allocations of meta-data structures
like SKBs occurs.

The IO Visor Project have an introduction to XDP.

Presentations

List of XDP focused presentations:

• March 2016 - Initial presentation by Facebook (Tom and Alexei)

• July 2016 - IO visor (Brenden Blanco)

• September 2016 - Intro and use-case, Red Hat Inc. (Jesper Brouer)

• April 2017 - Keynote NetDevconf 2.1: XDP Mythbusters

7

https://www.iovisor.org/technology/xdp
https://github.com/iovisor/bpf-docs/blob/master/Express_Data_Path.pdf
http://www.slideshare.net/IOVisor/express-data-path-linux-meetup-santa-clara-july-2016
http://people.netfilter.org/hawk/presentations/xdp2016/xdp_intro_and_use_cases_sep2016.pdf
http://netdevconf.org/2.1/session.html?miller


Prototype Kernel Documentation, Release 0.0.1

• April 2017 - XDP/eBPF tutorial: XDP for the Rest of Us

• April 2017 - Facebook Droplet

• April 2017 - CloudFlare integrating XDP

Historically the Network Performance BoF at NetDev 1.1 (Feb 2016) was the first presentation to propose the idea of
processing RX packet-pages directly out of the driver RX ring queue.

Press coverage

List of press coverage:

• April 2016 - LWN.net covered the very early patches

Related resources

List of related presentations or write-ups:

• (Juli 2016): Next Steps for Linux Network Stack (Video)

• (Juli 2016): CETH Common Ethernet Driver Framework (Huawei)

• (Aug 2016): What Can BPF Do For You (LinuxCon)

• (Sep 2016): Dive into BPF: a list of reading material

• (Oct 2016): XDP in OpenStack (video) for DDoS protection

• (Oct 2016): NetDev 1.2 video by David Miller

• (April 2017): BPF and XDP Reference Guide: Cilium developer’s guide

3.1.2 Disclaimer

XDP is not for every use-case.

Important to understand

It is important to understand that the XDP speed gains comes at a cost of loss of generalization and fairness.

XDP does not provide fairness. There is no buffering (qdisc) layer to absorb traffic bursts when the TX device is too
slow, packets will simply be dropped. Don’t use XDP in situations where the RX device is faster than the TX device,
as there is no back-pressure to save the packet from being dropped. There is no qdisc layer or BQL (Byte Queue Limit)
to save you from introducing massive bufferbloat.

Using XDP is about specialization. Crafting a solution towards a very specialized purpose, that will require selecting
and dimensioning the appropriate hardware. Using XDP requires understanding the dangers and pitfalls, that come
from bypassing large parts of the kernel network stack code base, which is there for good reasons.

That said, XDP can be the right solution for some use-cases, and can yield huge (orders of magnitude) performance
improvements, by allowing this kind of specialization.

8 Chapter 3. Linux Networking Subsystem

http://netdevconf.org/2.1/session.html?gospodarek
http://netdevconf.org/2.1/session.html?zhou
http://netdevconf.org/2.1/session.html?bertin
http://people.netfilter.org/hawk/presentations/NetDev1.1_2016/links.html
http://lwn.net/Articles/682538/
http://people.netfilter.org/hawk/presentations/theCamp2016/theCamp2016_next_steps_for_linux.pdf
http://video.thecamp.dk/jesper-brauer-100gbit-challenge/
http://www.slideshare.net/IOVisor/ceth-for-xdp-linux-meetup-santa-clara-july-2016
http://schd.ws/hosted_files/lcccna2016/ec/iovisor-lc-bof-2016.pdf
http://sched.co/86Av
https://qmonnet.github.io/whirl-offload/2016/09/01/dive-into-bpf/
https://www.youtube.com/watch?v=1oAsRzrwAAw
https://www.youtube.com/watch?v=NlMQ0i09HMU&feature=youtu.be&t=3m3s
https://en.wikipedia.org/wiki/David_S._Miller
http://cilium.readthedocs.io/en/latest/bpf/#bpf-and-xdp-reference-guide


Prototype Kernel Documentation, Release 0.0.1

3.1.3 Design

XDP is designed for high performance. It uses known techniques and applies selective constraints to achieve perfor-
mance goals. XDP is also designed for programmability. New functionality can be implemented on the fly without
needing kernel modification

Contents:

Overall design

Requirements defined in document Requirements.

Programmability

XDP is designed for programmability.

Users want programmability as close as possible to the device hardware, to reap the performance gains, but they also
want portability. The purpose of XDP is making such programs portable across multiple devices and vendors.

(It is even imagined that XDP programs should be able to run in user space, either for simulation purposes or combined
with other raw packet data-plane frameworks like netmap or DPDK).

It is expected that some HW vendors will take steps towards offloading XDP programs into their hardware. It is fine
if they compete on this to sell more hardware. It is no different from producing the fastest chip. XDP also encourages
innovation for new HW features, but when extending XDP programs with a new hardware feature (e.g. which only a
single vendor supports), this must be expressed within the XDP API as a capability or feature (see section Capabilities
negotiation). This functions as a common capabilities API from which vendors can choose what to implement (based
on customer demand).

Capabilities negotiation

Warning: This interface is missing in the implementation

XDP has hooks and feature dependencies in the device drivers. Planning for extendability, not all device drivers will
necessarily support all of the future features of XDP, and new feature adoption in device drivers will occur at different
development rates.

Thus, there is a need for the device driver to express what XDP capabilities or features it provides.

When attaching/loading an XDP program into the kernel, a feature or capabilities negotiation should be conducted.
This implies that an XDP program needs to express what features it wants to use.

If an XDP program being loaded requests features that the given device driver does not support, the program load
should simply be rejected.

Note: I’m undecided on whether to have an query interface, because users could just use the regular load-interface to
probe for supported options. The downside of probing is the issues SElinux runs into, of false alarms, when glibc tries
to probe for capabilities.

3.1. XDP - eXpress Data Path 9



Prototype Kernel Documentation, Release 0.0.1

Implementation issue

The current implementation is missing this interface. Worse, the two actions XDP_DROP and XDP_TX should have
been expressed as two different capabilities, because XDP_TX requires more changes to the device driver than a
simple drop like XDP_DROP.

One can (easily) imagine that an older driver only wants to implement the XDP_DROP facility. The reason is that
XDP_TX would require changing too much driver code, which is a concern for an old, stable and time-proven driver.

Data plane split

Requirements

Driver RX hook

Gives us access to packet-data payload before allocating any meta-data structures, like SKBs. This is key to perfor-
mance, as it allows processing RX “packet-pages” directly out of the driver’s RX ring queue.

Early drop

Early drop is key for the DoS (Denial of Service) mitigation use-cases. It builds upon a principle of spending/investing
as few CPU cycles as possible on a packet that will get dropped anyhow.

Doing this “inline”, before delivery to the normal network stack, has the advantage that a packet that does need delivery
to the normal network stack can still get all the features and benefits as before; there is thus no need to deploy a bypass
facility merely to re-inject “good” packets into the stack again.

Write access to packet data

XDP needs the ability to modify packet data. This is unfortunately often difficult to obtain, as it requires fundamental
changes to the driver’s memory model.

Unfortunately most drivers don’t have “writable” packet data as default. This is due to a workaround for performance
bottlenecks in both the page-allocator and DMA APIs, which has the side-effect of necessitating read-only packet
pages.

Instead, most drivers (currently) allocate both a SKB and a writable memory buffer, in which to copy (“linearise”)
the packet headers, and also store skb_shared_info. Then the remaining payload (pointing past the headers just
copied) is attached as (read-only) paged data.

Header push and pop

The ability to push (add) or pop (remove) packet headers indirectly depends on write access to packet-data. (One could
argue that a pure pop could be implemented by only adjusting the payload offset, thus not needing write access).

This requirement goes hand-in-hand with tunnel encapsulation or decapsulation. It is also relevant for e.g adding a
VLAN header, as needed by the Use-case: DDoS scrubber in order to work around the XDP_TX single NIC limitation.

This requirement implies the ability to adjust the packet-data start offset/pointer and packet length. This requires
additional data to be returned.

This also has implications for how much headroom drivers should reserve in the SKB.

10 Chapter 3. Linux Networking Subsystem



Prototype Kernel Documentation, Release 0.0.1

Page per packet

On RX many NIC drivers split up a memory page, to share it for multiple packets, in-order to conserve memory.
Doing so complicates handling and accounting of these memory pages, which affects performance. Particularly the
extra atomic refcnt handling needed for the page can hurt performance.

XDP defines upfront a memory model where there is only one packet per page. This simplifies page handling and
open up for future extensions.

This requirement also (upfront) result in choosing not to support things like, jumbo-frames, LRO and generally packets
split over multiple pages.

In the future, this strict memory model might be relaxed, but for now it is a strict requirement. With a more flexible
Capabilities negotiation it might be possible to negotiate another memory model. Given some specific XDP use-case
might not require this strict memory model.

Packet forwarding

Implementing a router/forwarding data plane is DPDK’s prime example for demonstrating superior performance. For
the sheer ability to compare against DPDK, XDP also needs a forwarding capability.

RX bulking

3.1.4 Implementation

This document section is primarily for coordinating the XDP infrastructure developers.

Keeping track of Missing Features and details about suboptimal implementations that need to be looked at.

Contents:

XDP actions

XDP_PASS

XDP_PASS means the XDP program chose to pass the packet to the normal network stack for processing. Note that
the XDP program is allowed to have modified the packet-data.

XDP_DROP

XDP_DROP is perhaps the simplest and fastest action. It simply instructs the driver to drop the packet. Given this
action happens at the earliest RX stage in the driver, dropping a packet simply implies recycling it back-into the RX
ring queue it just “arrived” on. There is simply no faster way to drop a packet. This comes close to a driver hardware
test feature.

XDP_TX

The XDP_TX action result in TX bouncing the received packet-page back out the same NIC it arrived on. This is
usually combined with modifying the packet contents before returning action XDP_TX.

The XDP_TX feature can be used for implementing a special kind of one-legged Load-Balancer as described in Use-
case: Load Balancer.

3.1. XDP - eXpress Data Path 11



Prototype Kernel Documentation, Release 0.0.1

XDP_ABORTED

The XDP_ABORTED action is not something a functional program should ever use as a return code. This return
code is something an eBPF program returns in case of an eBPF program error, e.g. division by zero. For this reason
XDP_ABORTED will always be the value zero.

This XDP_ABORTED action results in the packet getting dropped.

For how to troubleshoot this kind of unlikely error event, see the section Troubleshooting and Monitoring.

Fall-through

There must also be a fall-through default: case, which is hit if the program returns an unknown action code (e.g.
future action this driver does not support).

These unknown return codes will result in packet drop.

See the section Troubleshooting and Monitoring for how to catch these kind of situations.

Code example

The basic action code block the driver use, is simply a switch-case statement as below.

switch (action) {
case XDP_PASS:

break; /* Normal netstack handling */
case XDP_TX:

if (driver_xmit(dev, page, length) == NETDEV_TX_OK)
goto consumed;

goto xdp_drop; /* Drop on xmit failure */
default:

bpf_warn_invalid_xdp_action(action);
case XDP_ABORTED:
case XDP_DROP:

xdp_drop:
if (driver_recycle(page, ring))

goto consumed;
goto next; /* Drop */

}
}

Warning: It is still undecided whether the action code needs to be partitioned into opcodes, with some of the
upper bits used as values for the given opcode. This can be extended later.

Userspace API

Warning: The userspace API specification should have been defined properly before code was accepted upstream.
Concerns have been raised about the current API upstream. Users should expect this first API attempt will need
adjustments; this cannot be considered a stable API yet.

Most importantly, capabilities negotiation is missing; see Capabilities negotiation.

12 Chapter 3. Linux Networking Subsystem



Prototype Kernel Documentation, Release 0.0.1

Planning for API extension

The kernel documentation about syscalls have some good considerations when designing an extendable API, and
Michael Kerrisk also have some entertaining API examples.

Note: With XDP_FLAGS in commit 85de8576a0b1 (Daniel) prepared add/replace/delete logic for XDP programs.

Struct xdp_prog

Currently (4.8-rc6) the XDP program is simply a bpf_prog pointer. While this is good for simplicity, it limits extend-
ability for upcoming features.

Maybe we should introduce a new struct xdp_prog that can carry information related to the XDP program.
Notice this approach does not affect performance (tested and benchmarked), because the extra dereference for the
eBPF program only happens once per 64 packets in the poll function.

The features that need this are:

• Multi-port TX: Need to know own port index and port lookup table.

• XDP program per RX queue: Need setup info about program type, global or specific, due to program-
replacement semantics.

• Capabilities negotiation: Need to store information about features program wants to use, in order to validate
this.

Todo: How kernel devel works: This new struct xdp_prog feature cannot go into the kernel before one of
the three users of the struct is also implemented. (Note, Jesper has implemented this struct change and has even
benchmarked that it does not hurt performance).

XDP meta-data

The struct xdp_md carry XDP meta-data (“_md”). It is still extensible because it has a internal BPF insn rewriter.

Troubleshooting and Monitoring

Users need the ability to both monitor and troubleshoot an XDP program; particularly so in case of error events like
XDP_ABORTED, and in case an XDP program starts to return invalid and unsupported action codes (caught by the
Fall-through).

Note: Daniel choose to implement this as tracepoints. See commit: a67edbf4fb6d (“bpf: add initial bpf tracepoints”)
https://git.kernel.org/davem/net-next/c/a67edbf4fb6d Scheduled for kernel 4.11.

Warning: The current (4.8-rc6) implementation is not optimal in this area. In the Fall-through case, the
packet is dropped and a warning is generated only once about the invalid XDP program action code, by calling:
bpf_warn_invalid_xdp_action(action_code);

3.1. XDP - eXpress Data Path 13

https://github.com/torvalds/linux/blob/master/Documentation/adding-syscalls.txt
http://man7.org/
http://man7.org/conf/index.html
https://git.kernel.org/davem/net-next/c/85de8576a0b1
https://git.kernel.org/davem/net-next/c/a67edbf4fb6d


Prototype Kernel Documentation, Release 0.0.1

The facilities and behavior need to be improved in this area.

Two options are on the table currently:

• Counters.

Simply add counters to track these events. This allows admins and monitoring tools to catch and count these
events. This does require standardizing these counters to help monitor tools.

• Tracepoints.

Another option is adding tracepoints to these situations. These are much more flexible than counters. The
downside is that these error events might never be caught, if the tracepoint isn’t active.

An important design consideration is that the monitor facility must not be too expensive to execute, even though events
like XDP_ABORTED and Fall-through should normally be very rare. This is because an external attacker (given the
DDoS uses-cases) might find a way to trigger these events, which would then serve as an attack vector against XDP.

Missing Features

Record missing implementation features here.

Missing: Push/pop headers

Requirement defined here: Header push and pop.

Needed by Use-case: DDoS scrubber

Initial support for XDP head adjustment added to net-next in this commit: https://git.kernel.org/davem/
net-next/c/293bfa9b486

Initial support only covers driver mlx4.

Todo: Update document once feature is available in a kernel release. Plus, keep track of drivers supporting this
feature.

Todo: Create new section under Userspace API that describe howto use this and point to sample programs.

The eBPF program gets a new helper function called: bpf_xdp_adjust_head

Missing: Multi-port TX

Missing: Capabilities negotiation

See: Capabilities negotiation

Missing: XDP program per RX queue

Changes to the user space API are needed to add this feature.

14 Chapter 3. Linux Networking Subsystem

https://git.kernel.org/davem/net-next/c/293bfa9b486
https://git.kernel.org/davem/net-next/c/293bfa9b486


Prototype Kernel Documentation, Release 0.0.1

Missing: Cache prefetching

Drivers

XDP depends on drivers implementing the RX hook and set-up API. Adding driver support is fairly easy, unless it
requires changing the driver’s memory model (which is often the case).

Mellanox: mlx4

The first driver implementing XDP were the Mellanox mlx4 driver. The corresponding NIC is called ConnectX-3 and
ConnectX-3 pro. These NICs run Ethernet at 10Gbit/s and 40Gbit/s.

Mellanox: mlx5

The Mellanox driver mlx5 support XDP since kernel v4.9, but kernel v4.10 is recommended as some minor fixes got
applied.

These NICs run Ethernet at 10G, 25G, 40G, 50G and 100Gbit/s. They are called ConnectX-4 and ConnectX-4-Lx (Lx
is limited to max 50G or 2x 25G).

Netronome: nfp

Driver: nfp Kernel release: v4.10

virtio-net

Driver: virtio-net Kernel release: v4.10

Cavium/Qlogic: qede

Driver: qede Kernel release: v4.10

Cavium: thunder

Driver: thunder/nicvf

• Kernel release: v4.12

Broadcom: bnxt

Driver: bnxt

• Kernel release: v4.12

3.1. XDP - eXpress Data Path 15

http://www.mellanox.com/page/products_dyn?product_family=127&mtag=connectx_3_en
http://www.mellanox.com/page/products_dyn?product_family=162&mtag=connectx_3_pro_en_card
http://www.mellanox.com/page/products_dyn?product_family=204&mtag=connectx_4_en_card
http://www.mellanox.com/page/products_dyn?product_family=219&mtag=connectx_4_lx_en_card


Prototype Kernel Documentation, Release 0.0.1

Intel: ixgbe

Driver: ixgbe

• Kernel release: v4.12

3.1.5 Use-cases

XDP use-cases; some are only proposals.

Contents:

Use-case: DDoS

DDoS protection was the primary use-case XDP was born out of. CloudFlare presented their DDoS use-case at the
Network Performance BoF at NetDev 1.1, which convinced many Kernel developers that this was something that
needed to be solved.

End-host protection

When a server is under DoS (Denial-of-Service) attack, the attacker is trying to use as many resource on the server as
possible, in order to not leave processing time to service the legitimate users.

Owing to XDP running so early in the software stack, there is almost no processing cost associated with dropping a
packet. This makes it a viable option to load a XDP program directly on the server, as filtering out bad/attacker traffic
(this early) frees up processing resources.

As XDP is still part of the Linux network stack, packets that “pass” the XDP filter still have all features for further
filtering that the kernel normally provides. It works in concert with the regular network stack, rather than trying to
by-pass it.

Use-case: DDoS scrubber

Version 0.2

Status Proposal, need some new XDP features

This document investigates whether XDP can be used for implementing a machine that does traffic scrubbing at the
edge of the network.

DDoS volume attacks

This idea/use-case comes from a customer. They have a need to perform traffic scrubbing or cleaning when getting
attacked by DDoS volume attacks. They have much larger pipes to the Internet than their internal backbone can
actually handle.

Usually a specific IP address is attacked. When that happens, the IP address is placed into MPLS-VRF alternative
routing tables, so the traffic gets routed through some scrubbing servers.

The purpose of the scrubbing servers is to reduce (or drop) enough traffic, such that the DoS volume attack is less than
the capacity of the internal backbone.

16 Chapter 3. Linux Networking Subsystem

https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/
https://blog.cloudflare.com/partial-kernel-bypass-merged-netmap/
http://people.netfilter.org/hawk/presentations/NetDev1.1_2016/links.html


Prototype Kernel Documentation, Release 0.0.1

Forward clean traffic

The clean/good traffic needs to be forwarded towards the internal backbone.

To get around the XDP limitation of only sending back out the same NIC, they want to add a VLAN header to the
packet before calling XDP_TX, allowing them to catch the traffic and re-steer it back into the main MPLS-VRF routing
table.

Need: traffic sampling XDP_DROP

They want a way to analyze the traffic they drop (XDP_DROP), to catch false positives. This could be implemented
by sampling the drop traffic, by returning XDP_PASS a percentage of the times, and then have a userspace tcpdump
running.

To indicate which eBPF rule caused the drop, they were thinking of modifying the packet header by adding a VLAN
id. That way the tcpdump could run on a net_device with a given VLAN.

Note: NEW-ACTION: The sampling could be implemented more efficiently, if there were a XDP_DUMP action
which sent the sampled packets to an AF_PACKET socket.

Need: traffic sampling XDP_TX

If the scrubber filter is not good enough, then too much bad traffic is allowed through. This is usually the base case,
once the attack starts.

Thus, they have need for analysing the traffic that gets forwarded with XDP_TX. (ISSUE) There is currently no way
to sample or dump the XDP_TX traffic.

A physical solution could be to do switch-port mirroring of the traffic, and then have another machine (or even the
same machine) receive traffic for analysis. They were talking about just using the same machine (as there usually are
two NIC ports), but the worry is that this would cost double the PCIe bandwidth.

Warning: NEW-FEATURE: A software solution could be a combination of XDP_TX and XDP_DUMP. Doing
both XDP_TX and XDP_DUMP would only cost an extra page refcnt. They only need sampling. The XDP_DUMP
should be implemented such that it has a limited queue size, and simply drops if the queue is full.

Need: smaller eBPF programs

They experience different DDoS attacks. They don’t want to have one big eBPF program that needs to handle every
kind of attack. This program would also get too slow once the size increase.

DDoS attacks are usually very specific, and are often stopped by spotting a very specific pattern in the packet that is
constant enough to identify the bad traffic. It is key that they can quickly construct an XDP program matching this
very specific pattern, without risking affecting the stability of other XDP filters.

They also have a need to handle several simultaneous attacks, usually targeting different destination IP addresses.

Warning: NEED-RXQ-FEATURE: This could be solved by using NIC HW filters to steer the traffic a specific
RX queue, and then allow XDP/eBPF programs to run on specific queues.

3.1. XDP - eXpress Data Path 17



Prototype Kernel Documentation, Release 0.0.1

Ethtool filters for mlx4

The HW filter capabilities are highly dependent on the HW, and limited by what can be expressed by ethtool.

From below documentation, it looks like mlx4 have the filters needed for this project.

Taken from mlx4 Linux User Manual

Ethtool domain is used to attach an RX ring, specifically its QP to a specified flow. Please refer to the most recent
ethtool manpage for all the ways to specify a flow.

Examples:

• ethtool -U mlx4p1 flow-type ether dst f4:52:14:7a:58:f1 loc 5 action 2

All packets that contain the above destination MAC address are to be steered into rx-ring 2 (its
underlying QP), with location/priority 5 (within the ethtool domain)

• ethtool -U mlx4p1 flow-type tcp4 dst-port 22 loc 255 action 2

All packets that contain the above destination IP address and source port are to be steered into rx-ring
2. When destination MAC is not given, the user’s destination MAC is filled automatically.

• ethtool -u mlx4p1

Shows all of ethtool’s steering rule

When configuring two rules with the same location/priority, the second rule will overwrite the first one, so this ethtool
interface is effectively a table.

Inserting Flow Steering rules in the kernel requires support from both the ethtool in the user space and in kernel
(v2.6.28).

Use-case: Load Balancer

The load-balancer use-case originated from Facebook, as they have a need to load-balance their traffic. They obviously
already load balance, but are looking for a faster and more scalable approach.

Facebook currently use the IPVS (IP Virtual Server) load balancer software, which is part of the standard Linux Kernel
(since kernel 2.6.10). They even wrote a Python module for configuring IPVS, which is a pure-python replacement
for ipvsadm (ipvsadm git tree).

Facebook presented at NetDevConf 2.1 (April 2017) that they are starting to deploy an XDP based solution for both
this Load Balancer solution (that gave a 10x speedup compared to IPVS) and a DDoS protection solution named
droplet. See: slides and YouTube video.

Traditional load balancer

Traditionally a service load balancer (like IPVS) has more NICs (Network Interface Cards), and forwards traffic to the
back-end servers (called “real server” for IPVS).

The current XDP implementation (XDP_TX in kernel 4.8) can only forward packets back out the same NIC they
arrived on. This makes XDP unsuited for implementing a traditional multi-NIC load balancer.

A traditional load balancer easily becomes a single point of failure. Thus, multiple load balancers are usually deployed,
in a High Availability (HA) cluster. In order to make load balancer failover transparent to client applications, the load
balancer(s) need to synchronize their state (E.g. via IPVS sync protocol sending UDP multicast, preferable send on a
separate network/NIC).

18 Chapter 3. Linux Networking Subsystem

http://www.mellanox.com/related-docs/prod_software/Mellanox_EN_for_Linux_User_Manual_v2_0-3_0_0.pdf
http://www.linuxvirtualserver.org/
https://github.com/facebook/gnlpy/blob/master/ipvs.py
https://kernel.org/pub/linux/utils/kernel/ipvsadm/
https://git.kernel.org/cgit/utils/kernel/ipvsadm/ipvsadm.git/
http://netdevconf.org/2.1/session.html?zhou
http://netdevconf.org/2.1/slides/apr6/zhou-netdev-xdp-2017.pdf
https://www.youtube.com/watch?v=YEU2ClcGqts
https://en.wikipedia.org/wiki/High-availability_cluster#Node_configurations
http://www.linuxvirtualserver.org/docs/sync.html


Prototype Kernel Documentation, Release 0.0.1

Untraditional XDP load balancer

Imagine implementing a load balancer without any dedicated servers for load balancing, 100% scalable and with no
single point of failure.

Be the load balancer yourself!

The main idea is, allow XDP to be the load-balancing layer. Running the XDP load balancer software directly on the
“back-end” server, with no dedicated central server.

It corresponds to running IPVS on the backend (“real servers”), which is possible, and some IPVS examples are
available (e.g Ultra Monkey). But that is generally not recommended (in high load situations), because it increases the
load on the application server itself, which leaves less CPU time for serving requests.

Why is this a good idea for XDP then?

XDP has a speed advantage. The XDP load balance forwarding decision happens very early, before the OS has
spent/invested too many cycles on the packet. This means the XDP load balancing functionality should not increase
the load on the server significantly. Thus, it should be okay to run the service and LB on the same server. One can
even imagine having a feedback loop into the LB-program decision, based on whether the service is struggling to keep
up.

Who will balance the incoming traffic?

The router can distribute/spread incoming packets across the servers in the cluster, e.g. via using Equal-Cost Multi-
Path routing (ECMP) like Google’s Maglev solutions does. Google then use some consistent hashing techniques to
forward packets to the correct service backend servers.

Serving correct client

The challenging part, in such a distributed system of load balancers, is to coordinate packets getting forwarded to the
(correct) server responsible for serving the client.

Google uses a consistent hashing scheme, but other solutions are also possible.

Hardware setup

As mentioned under Disclaimer, it is very important to understand hardware environment this kind of setup works
within.

When using the same network segment for the load balancing traffic (due to XDP_TX limitations), extra care need to
be taken when dimensioning the network capacity.

One can create a cluster of servers, all connected to the same 10Gbit/s switch, and the switch has the same 10Gbit/s
uplink capacity limitation. The 10Gbit/s capacity is bidirectional, meaning both RX and TX have 10Gbit/s. No
(incoming) network overload situation can occur, because the uplink can only forward with 10G, and LB server can
RX with 10G and TX with 10G to another “service-server”, happening over the Ethernet switch fabric, thus RX
capacity of the “service-server” is still 10G. Sending traffic back to the uplink happens via “direct-return” from the
“service-server”, still have 10G capacity left in the Ethernet switch fabric. Thus, with a proper HW setup the XDP_TX
limitation can be dealt with.

3.1. XDP - eXpress Data Path 19

http://kb.linuxvirtualserver.org/wiki/Examples
http://www.ultramonkey.org/2.0.1/topologies/sl-ha-lb-eg.html
https://cloudplatform.googleblog.com/2016/03/Google-shares-software-network-load-balancer-design-powering-GCP-networking.html


Prototype Kernel Documentation, Release 0.0.1

Need: RX HW hash

Warning: FEATURE: provide NIC RX HW hash has as meta-data input to XDP program.

A scheme to determine which flows a given server is responsible for serving can benefit from getting the NIC RX
hardware hash as input.

The XDP load balancing decision can be made faster, if it does not have to read+parse the packet contents before
making a route decision. This is possible if basing the decision on the RX hardware hash, available via the RX
descriptor.

Note: Requires: setting up the same NIC HW hash on all servers in the cluster.

3.1.6 End-user documentation

This part of the XDP documentation is targeted at end-users, describing how to use and setup XDP.

The XDP program running (inside the driver hook point) is an eBPF program. eBPF is a general kernel facility not
restricted to the XDP use-case. Thus, have its own documentation here: eBPF - extended Berkeley Packet Filter. This
documentation is focused on using eBPF for the XDP specific use-case.

Contents:

XDP/eBPF build environment

Tool chain

The XDP program running (in the driver hook point) is an eBPF program (see eBPF - extended Berkeley Packet Filter).
Unless you want to write eBPF machine-code like instruction by hand, you likely want to install some front-ends, that
allow you to write some restricted-C code.

Tools for compiling kernel bpf samples requires having installed:

• clang >= version 3.4.0

• llvm >= version 3.7.1

Note that LLVM’s tool ‘llc’ must support target ‘bpf’, list version and supported targets with command: llc
--version.

There is also toolkit called BCC (BPF Compiler Collection) that makes eBPF programs easier to write, and front-ends
in Python and lua. But it also depend on LLVM.

Build samples/bpf

This github repository also contains some bpf and XDP examples in the directory samples/bpf/. Simply run make in
that directory to build the bpf samples.

20 Chapter 3. Linux Networking Subsystem

https://github.com/torvalds/linux/blob/master/samples/bpf/README.rst
https://github.com/iovisor/bcc/blob/master/README.md
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf


Prototype Kernel Documentation, Release 0.0.1

Linux distros

Fedora 25

Since Fedora 25, the package BCC is included with the distribution, and LLVM+clang in the correct versions.

Install commands for Fedora 25:

dnf install llvm llvm-libs llvm-doc clang clang-libs
dnf install bcc bcc-tools bcc-doc --enablerepo=updates-testing
dnf install kernel-devel
dnf install python3-pyroute2

Note: As of this writing (2017-01-18) BCC for F25 is still in the updates-testing repository.

XDP programs with eBPF

Two projects with example code:

• Using kernel samples/bpf XDP programs and libbpf

• Using BCC toolkit

Kernel samples/bpf

The kernel include some examples of XDP-eBPF programs, see kernel samples/bpf.

There are also some XDP eBPF code examples in the prototype-kernel project under prototype-
kernel/kernel/samples/bpf. Simply run make inside this directory to compile the samples.

Special XDP eBPF cases

With XDP the eBPF program gets “direct” access to the raw/unstructured packet-data. Thus, eBPF uses some “direct
access” instruction for accessing this data, but for safety this need to pass the in-kernel validator.

Walking the packet data, requires writing the boundary checks in a specialized manor.

Like:

if (data + nh_off > data_end)
return rc;

3.1. XDP - eXpress Data Path 21

https://github.com/iovisor/bcc/blob/master/README.md
https://github.com/torvalds/linux/blob/master/samples/bpf/
https://github.com/torvalds/linux/blob/master/tools/lib/bpf/
https://github.com/iovisor/bcc/blob/master/README.md
https://github.com/torvalds/linux/blob/master/samples/bpf/
https://github.com/netoptimizer/prototype-kernel
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf


Prototype Kernel Documentation, Release 0.0.1

22 Chapter 3. Linux Networking Subsystem



CHAPTER 4

Linux Memory Management Subsystem

This is the top-level documentation for the Linux Kernel’s Memory Management subsystem.

Contents:

4.1 The page_pool documentation

This is top-level for the page_pool documentation.

Contents:

4.1.1 Introduction

The page_pool is a generic API for drivers that have a need for a pool of recycling pages used for streaming DMA.

Motivation

The page_pool is primarily motivated by two things (1) performance and (2) changing the memory model for drivers.

Drivers have developed performance workarounds when the speed of the page allocator and the DMA APIs became
too slow for their HW needs. The page pool solves them on a general level providing performance gains and benefits
that local driver recycling hacks cannot realize.

A fundamental property is that pages are returned to the page_pool. This property allow a certain class of Optimization
principle.

Memory model

Once drivers are converted to using page_pool API, then it will become easier to change the underlying memory model
backing the driver with pages (without changing the driver).

23



Prototype Kernel Documentation, Release 0.0.1

One prime use-case is NIC zero-copy RX into userspace. As DaveM describes in his Google-plus post, the mapping
and unmapping operations in the address space of the process has a cost that cancels out most of the gains of such
zero-copy schemes.

This mapping cost can be solved the same way as the keeping DMA mapped trick. By keeping the pages VM-mapped
to userspace. This is a layer that can be added later to the page_pool. It will likely be beneficial to also consider using
huge-pages (as backing) to reduce the TLB-stress.

Advantages

Advantages of a recycling page pool as bullet points:

1. Faster than going through page-allocator. Given a specialized allocator require less checks, and can piggyback
on driver’s resource protection (for alloc-side).

2. DMA IOMMU mapping cost is removed by keeping pages mapped.

3. Makes DMA pages writable by predictable DMA unmap point. (UPDATE kernel v4.10: This can also be
acheived via Alexander Duyck’s changes to the DMA API, namely using DMA_ATTR_SKIP_CPU_SYNC,
which skips DMA sync as a part the unmap, but requires driver to carefully DMA sync needed memory)

4. OOM protection at device level, as having a feedback-loop knows number of outstanding pages.

5. Flexible memory model allowing zero-copy RX, solving memory early demux (does depend on HW filters into
RX queues)

6. Less fragmentation of the page buddy algorithm, when driver maintains a steady-state working-set.

4.1.2 Design: page_pool

Design documentation for the page_pool.

Overall design

The page_pool is designed for performance, and for creating a flexible and common memory model for drivers. Most
drivers are based on allocating pages for their DMA receive-rings. Thus, it is a design goal to make it easy to convert
these drivers.

Using page_pool provides an immediate performance improvement, and opens up for the longer term goal of zero-copy
receive into userspace.

Optimization principle

A fundamental property is that pages must be recycled back into the page_pool (when the last user of the page is
done).

Recycling pages allow a certain class of optimizations, which is to move setup and tear-down operations out of the
fast-path, sometimes known as constructor/destruction operations. DMA map/unmap is one example of operations
this applies to. Certain page alloc/free validations can also be avoided in the fast-path. Another example could be
pre-mapping pages into userspace, and clearing them (memset-zero) outside the fast-path.

24 Chapter 4. Linux Memory Management Subsystem

https://plus.google.com/+DavidMiller/posts/EUDiGoXD6Xv
https://twitter.com/alexanderduyck
https://github.com/torvalds/linux/blob/v4.10/Documentation/DMA-attributes.txt#L71


Prototype Kernel Documentation, Release 0.0.1

Memory Model

The page_pool should be as transparent as possible. This mean that page coming out of a page_pool, should be
considered a normal page (with as few restrictions as possible). This implies a more tight integration with the existing
page allocator APIs. (This should also make it easier to compile out.)

Driver are still allowed to split-up page and manipulate refcnt.

DMA map+unmap

The page_pool API takes over the DMA map+unmap operations, based on the Optimization principle. The cost of
DMA map+unmap depend on the hardware architecture, and whether features like DMA IOMMU have been enabled
or not. Thus, the benefit is harder to quantify.

Taking over DMA map+unmap operations, also implies the page_pool cannot be a complete drop-in replacement for
the page allocator.

Common driver layer

It is important to have a common layer drivers use for allocating and freeing pages.

The time budget for XDP direct forwarding between interfaces (based on different drivers) cannot rely on pages going
through the page allocator (as the base cost is higher than the budget). The page_pool recycle technique is needed
here, across drivers.

Drivers also need a flexible memory model for supporting different use-cases, which have trade-offs for different usage
scenarios. And the page_pool need to support these scenarios.

Network scenarios: XDP requires drivers to change the memory model to one packet per page. When no XDP
program is loaded, the driver can instead choose to conserve memory by splitting up the page to share is for multiple
RX packets. When mapping pages to userspace, one packet per page is likely also needed. For more details on
networking see Memory Model for Networking.

Drivers old memory model

Drivers (not using the page_pool) allocate pages for DMA operations directly from the page allocator. Pages are
freed into the page allocator once their refcnt reach zero. Thus, pages are cycles through the page allocator. This
actually comes at a fairly high cost, measurable by the page_bench micro-benchmarks and graphs in MM-summit2016
presentation.

Driver work-arounds

Warning: Document not complete

Allocation side

Piggyback on drivers RX protection for page allocations.

4.1. The page_pool documentation 25

https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/mm/bench
http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf
http://people.netfilter.org/hawk/presentations/MM-summit2016/generic_page_pool_mm_summit2016.pdf


Prototype Kernel Documentation, Release 0.0.1

Memory Model for Networking

This design describes how the page_pool change the memory model for networking in the NIC (Network Interface
Card) drivers.

Note: The catch for driver developers is that, once an application request zero-copy RX, then the driver must use a
specific SKB allocation mode and might have to reconfigure the RX-ring.

Design target

Allow the NIC to function as a normal Linux NIC and be shared in a safe manor, between the kernel network stack
and an accelerated userspace application using RX zero-copy delivery.

Target is to provide the basis for building RX zero-copy solutions in a memory safe manor. An efficient communica-
tion channel for userspace delivery is out of scope for this document, but OOM considerations are discussed below
(Userspace delivery and OOM).

Background

The SKB or struct sk_buff is the fundamental meta-data structure for network packets in the Linux Kernel
network stack. It is a fairly complex object and can be constructed in several ways.

From a memory perspective there are two ways depending on RX-buffer/page state:

1. Writable packet page

2. Read-only packet page

To take full potential of the page_pool, the drivers must actually support handling both options depending on the
configuration state of the page_pool.

Writable packet page

When the RX packet page is writable, the SKB setup is fairly straight forward. The SKB->data (and skb->head) can
point directly to the page data, adjusting the offset according to drivers headroom (for adding headers) and setting the
length according to the DMA descriptor info.

The page/data need to be writable, because the network stack need to adjust headers (like TimeToLive and checksum)
or even add or remove headers for encapsulation purposes.

A subtle catch, which also requires a writable page, is that the SKB also have an accompanying “shared info” data-
structure struct skb_shared_info. This “skb_shared_info” is written into the skb->data memory area at the
end (skb->end) of the (header) data. The skb_shared_info contains semi-sensitive information, like kernel memory
pointers to other pages (which might be pointers to more packet data). This would be bad from a zero-copy point of
view to leak this kind of information.

Read-only packet page

When the RX packet page is read-only, the construction of the SKB is significantly more complicated and even involves
one more memory allocation.

26 Chapter 4. Linux Memory Management Subsystem



Prototype Kernel Documentation, Release 0.0.1

1. Allocate a new separate writable memory area, and point skb->data here. This is needed due to (above described)
skb_shared_info.

2. Memcpy packet headers into this (skb->data) area.

3. Clear part of skb_shared_info struct in writable-area.

4. Setup pointer to packet-data in the page (in skb_shared_info->frags) and adjust the page_offset to be past the
headers just copied.

It is useful (later) that the network stack have this notion that part of the packet and a page can be read-only. This
implies that the kernel will not “pollute” this memory with any sensitive information. This is good from a zero-copy
point of view, but bad from a performance perspective.

NIC RX Zero-Copy

Doing NIC RX zero-copy involves mapping RX pages into userspace. This involves costly mapping and unmapping
operations in the address space of the userspace process. Plus for doing this safely, the page memory need to be cleared
before using it, to avoid leaking kernel information to userspace, also a costly operation. The page_pool base “class”
of optimization is moving these kind of operations out of the fastpath, by recycling and lifetime control.

Once a NIC RX-queue’s page_pool have been configured for zero-copy into userspace, then can packets still be
allowed to travel the normal stack?

Yes, this should be possible, because the driver can use the SKB-read-only mode, which avoids polluting the page
data with kernel-side sensitive data. This implies, when a driver RX-queue switch page_pool to RX-zero-copy mode
it MUST also switch to SKB-read-only mode (for normal stack delivery for this RXq).

XDP can be used for controlling which pages that gets RX zero-copied to userspace. The page is still writable for the
XDP program, but read-only for normal stack delivery.

Kernel safety

For the paranoid, how do we protect the kernel from a malicious userspace program. Sure there will be a commu-
nication interface between kernel and userspace, that synchronize ownership of pages. But a userspace program can
violate this interface, given pages are kept VMA mapped, the program can in principle access all the memory pages in
the given page_pool. This opens up for a malicious (or defect) program modifying memory pages concurrently with
the kernel and DMA engine using them.

An easy way to get around userspace modifying page data contents is simply to map pages read-only into userspace.

Note: The first implementation target is read-only zero-copy RX page to userspace and require driver to use SKB-
read-only mode.

Advanced: Allowing userspace write access?

What if userspace need write access? Flipping the page permissions per transfer will likely kill performance (as this
likely affects the TLB-cache).

I will argue that giving userspace write access is still possible, without risking a kernel crash. This is related to the
SKB-read-only mode that copies the packet headers (in to another memory area, inaccessible to userspace). The attack
angle is to modify packet headers after they passed some kernel network stack validation step (as once headers are
copied they are out of “reach”).

Situation classes where memory page can be modified concurrently:

4.1. The page_pool documentation 27



Prototype Kernel Documentation, Release 0.0.1

1. When DMA engine owns the page. Not a problem, as DMA engine will simply overwrite data.

2. Just after DMA engine finish writing. Not a problem, the packet will go through netstack validation and be
rejected.

3. While XDP reads data. This can lead to XDP/eBPF program goes into a wrong code branch, but the eBPF
virtual machine should not be able to crash the kernel. The worst outcome is a wrong or invalid XDP return
code.

4. Before SKB with read-only page is constructed. Not a problem, the packet will go through netstack validation
and be rejected.

5. After SKB with read-only page has been constructed. Remember the packet headers were copied into a separate
memory area, and the page data is pointed to with an offset passed the copied headers. Thus, userspace cannot
modify the headers used for netstack validation. It can only modify packet data contents, which is less critical
as it cannot crash the kernel, and eventually this will be caught by packet checksum validation.

6. After netstack delivered packet to another userspace process. Not a problem, as it cannot crash the kernel. It
might corrupt packet-data being read by another userspace process, which one argument for requiring elevated
privileges to get write access (like NET_CAP_ADMIN).

Userspace delivery and OOM

These RX pages are likely mapped to userspace via mmap(), so-far so good. It is key to performance to get an efficient
way of signaling between kernel and userspace, e.g what page are ready for consumption, and when userspace are
done with the page.

It is outside the scope of page_pool to provide such a queuing structure, but the page_pool can offer some means
of protecting the system resource usage. It is a classical problem that resources (e.g. the page) must be returned in
a timely manor, else the system, in this case, will run out of memory. Any system/design with unbounded memory
allocation can lead to Out-Of-Memory (OOM) situations.

Communication between kernel and userspace is likely going to be some kind of queue. Given transferring packets
individually will have too much scheduling overhead. A queue can implicitly function as a bulking interface, and
offers a natural way to split the workload across CPU cores.

This essentially boils down-to a two queue system, with the RX-ring queue and the userspace delivery queue.

Two bad situations exists for the userspace queue:

1. Userspace is not consuming objects fast-enough. This should simply result in packets getting dropped when
enqueueing to a full userspace queue (as queue must implement some limit). Open question is; should this be
reported or communicated to userspace.

2. Userspace is consuming objects fast, but not returning them in a timely manor. This is a bad situation, because
it threatens the system stability as it can lead to OOM.

The page_pool should somehow protect the system in case 2. The page_pool can detect the situation as it is able
to track the number of outstanding pages, due to the recycle feedback loop. Thus, the page_pool can have some
configurable limit of allowed outstanding pages, which can protect the system against OOM.

Note, the Fbufs paper propose to solve case 2 by allowing these pages to be “pageable”, i.e. swap-able, but that is not
an option for the page_pool as these pages are DMA mapped.

Effect of blocking allocation

The effect of page_pool, in case 2, that denies more allocations essentially result-in the RX-ring queue cannot be
refilled and HW starts dropping packets due to “out-of-buffers”. For NICs with several HW RX-queues, this can be
limited to a subset of queues (and admin can control which RX queue with HW filters).

28 Chapter 4. Linux Memory Management Subsystem

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.9688


Prototype Kernel Documentation, Release 0.0.1

The question is if the page_pool can do something smarter in this case, to signal the consumers of these pages, before
the maximum limit is hit (of allowed outstanding packets). The MM-subsystem already have a concept of emergency
PFMEMALLOC reserves and associate page-flags (e.g. page_is_pfmemalloc). And the network stack already handle
and react to this. Could the same PFMEMALLOC system be used for marking pages when limit is close?

This requires further analysis. One can imagine; this could be used at RX by XDP to mitigate the situation by
dropping less-important frames. Given XDP choose which pages are being send to userspace it might have appropriate
knowledge of what it relevant to drop(?).

Note: An alternative idea is using a data-structure that blocks userspace from getting new pages before returning
some. (out of scope for the page_pool)

Early demux problem

Todo: Describe the early demux problem, and how page_pool solves this.

4.1. The page_pool documentation 29



Prototype Kernel Documentation, Release 0.0.1

30 Chapter 4. Linux Memory Management Subsystem



CHAPTER 5

eBPF - extended Berkeley Packet Filter

5.1 Introduction

The Berkeley Packet Filter (BPF) started (article 1992) as a special-purpose virtual machine (register based filter
evaluator) for filtering network packets, best known for its use in tcpdump. It is documented in the kernel tree, in the
first part of: Documentation/networking/filter.txt

The extended BPF (eBPF) variant has become a universal in-kernel virtual machine, that has hooks all over the ker-
nel. The eBPF instruction set is quite different, see description in section “BPF kernel internals” of Documenta-
tion/networking/filter.txt or look at this presentation by Alexei.

Areas using eBPF:

• XDP - eXpress Data Path

• Traffic control

• Sockets

• Firewalling (xt_bpf module)

• Tracing

• Tracepoints

• kprobe (dynamic tracing of a kernel function call)

• cgroups

5.2 Documentation

The primary user documentation for extended BPF is in the man-page for the bpf(2) syscall.

An excellent BPF and XDP Reference Guide is being maintained by the Cilium project.

31

http://www.tcpdump.org/papers/bpf-usenix93.pdf
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
http://www.slideshare.net/AlexeiStarovoitov/bpf-inkernel-virtual-machine
http://man7.org/linux/man-pages/man8/tc-bpf.8.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://cilium.readthedocs.io/en/latest/bpf/
https://www.cilium.io/


Prototype Kernel Documentation, Release 0.0.1

This documentation is focused on the kernel tree’s samples/bpf/ and tools/lib/bpf/. It is worth mentioning that other
projects exist, like BCC (BPF Compiler Collection), that has a slightly different user-facing syntax, but is interfacing
with the same kernel facilities as those covered by this documentation.

5.2.1 eBPF maps

This document describes what eBPF maps are, how you create them (Creating a map), and how to interact with them
(Interacting with maps). The different map types available are described here: Types of eBPF maps.

Using eBPF maps is a method to keep state between invocations of the eBPF program, and allows sharing data between
eBPF kernel programs, and also between kernel and user-space applications.

Basically a key/value store with arbitrary structure (from man-page bpf(2)):

eBPF maps are a generic data structure for storage of different data types. Data types are generally treated
as binary blobs, so a user just specifies the size of the key and the size of the value at map-creation time.
In other words, a key/value for a given map can have an arbitrary structure.

The map handles are file descriptors, and multiple maps can be created and accessed by multiple programs (from
man-page bpf(2)):

A user process can create multiple maps (with key/value-pairs being opaque bytes of data) and access
them via file descriptors. Different eBPF programs can access the same maps in parallel. It’s up to the
user process and eBPF program to decide what they store inside maps.

Creating a map

A map is created based on a request from userspace, via the bpf syscall (specifically bpf_cmd BPF_MAP_CREATE),
which returns a new file descriptor that refers to the map. On error, -1 is returned and errno is set to EINVAL, EPERM,
or ENOMEM. These are the struct bpf_attr setup arguments to use when creating a map via the syscall:

bpf(BPF_MAP_CREATE, &bpf_attr, sizeof(bpf_attr));

Notice how this kernel ABI is extensible, as more struct arguments can easily be added later as the sizeof(bpf_attr) is
passed along to the syscall. This also implies that API users must clear/zero sizeof(bpf_attr), as compiler can size-align
the struct differently, to avoid garbage data to be interpreted as parameters by future kernels.

The following configuration attributes are needed when creating the map:

union bpf_attr {
struct { /* anonymous struct used by BPF_MAP_CREATE command */

__u32 map_type; /* one of enum bpf_map_type */
__u32 key_size; /* size of key in bytes */
__u32 value_size; /* size of value in bytes */
__u32 max_entries; /* max number of entries in a map */
__u32 map_flags; /* prealloc or not */

};
}

Kernel sample/bpf ELF convention

For programs under samples/bpf/, defining a map have been integrated with ELF binary generated by LLVM. This is
purely one example of a userspace convention and not part of the kernel ABI. It still invokes the bpf syscall.

Map definitions are done by defining a struct bpf_map_def with an elf section __attribute__ SEC("maps"),
in the xxx_kern.c file. The maps file descriptor is available in the userspace xxx_user.c file, via global array variable

32 Chapter 5. eBPF - extended Berkeley Packet Filter

https://github.com/torvalds/linux/blob/master/samples/bpf/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://man7.org/linux/man-pages/man2/bpf.2.html
http://lxr.free-electrons.com/ident?i=bpf_cmd


Prototype Kernel Documentation, Release 0.0.1

map_fd[], and the array map index corresponds to the order the maps sections were defined in elf file of xxx_kern.c
file. Behind the scenes it is the load_bpf_file() call (from samples/bpf/bpf_load) that takes care of parsing ELF
file compiled by LLVM, pickup ‘maps’ section and creates maps via the bpf syscall.

struct bpf_map_def {
unsigned int type;
unsigned int key_size;
unsigned int value_size;
unsigned int max_entries;
unsigned int map_flags;

};

struct bpf_map_def SEC("maps") my_map = {
.type = BPF_MAP_TYPE_XXX,
.key_size = sizeof(u32),
.value_size = sizeof(u64),
.max_entries = 42,
.map_flags = 0

};

Qdisc Traffic Control convention

It is worth mentioning, that qdisc TC (Traffic Control), also use ELF files for defining the maps, but it uses another
layout. See man-page tc-bpf(8) and tc bpf examples in iproute2.git tree.

Interacting with maps

Interacting with eBPF maps happens through some lookup/update/delete primitives.

When writing eBFP programs using load helpers and libraries from samples/bpf/ and tools/lib/bpf/. Common function
name API have been created that hides the details of how kernel vs. userspace access these primitives (which is quite
different).

The common function names (parameters and return values differs):

void bpf_map_lookup_elem(map, void *key. ...);
void bpf_map_update_elem(map, void *key, ..., __u64 flags);
void bpf_map_delete_elem(map, void *key);

The flags argument in bpf_map_update_elem() allows to define semantics on whether the element exists:

/* File: include/uapi/linux/bpf.h */
/* flags for BPF_MAP_UPDATE_ELEM command */
#define BPF_ANY 0 /* create new element or update existing */
#define BPF_NOEXIST 1 /* create new element only if it didn't exist */
#define BPF_EXIST 2 /* only update existing element */

Userspace

The userspace API map helpers are defined in tools/lib/bpf/bpf.h and looks like this:

/* Userspace helpers */
int bpf_map_lookup_elem(int fd, void *key, void *value);

(continues on next page)

5.2. Documentation 33

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/bpf_load.c
http://man7.org/linux/man-pages/man8/tc-bpf.8.html
https://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git/tree/examples/bpf
https://git.kernel.org/cgit/linux/kernel/git/shemminger/iproute2.git/about/
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/bpf.h


Prototype Kernel Documentation, Release 0.0.1

(continued from previous page)

int bpf_map_update_elem(int fd, void *key, void *value, __u64 flags);
int bpf_map_delete_elem(int fd, void *key);
/* Only userspace: */
int bpf_map_get_next_key(int fd, void *key, void *next_key);

Interacting with an eBPF map from userspace, happens through the bpf syscall and a file descriptor. See how the map
handle int fd is a file descriptor . On success, zero is returned, on failures -1 is returned and errno is set.

Wrappers for the bpf syscall is implemented in tools/lib/bpf/bpf.c, and ends up calling functions in kernel/bpf/syscall.c,
like map_lookup_elem.

/* Corresponding syscall bpf commands from userspace */
enum bpf_cmd {

[...]
BPF_MAP_LOOKUP_ELEM,
BPF_MAP_UPDATE_ELEM,
BPF_MAP_DELETE_ELEM,
BPF_MAP_GET_NEXT_KEY,
[...]

};

Notice how void *key and void *value are passed as a void pointers. Given the memory seperation be-
tween kernel and userspace, this is a copy of the value. Kernel primitives like copy_from_user() and
copy_to_user() are used, e.g. see map_lookup_elem, which also kmalloc+kfree memory for a short period.

From userspace, there is no function call to atomically increment or decrement the value ‘in-place’. The
bpf_map_update_elem() call will overwrite the existing value, with a copy of the value supplied. Depending on
the map type, the overwrite will happen in an atomic way, e.g. using locking mechanisms specific to the map type.

Kernel-side eBPF program

The API mapping for eBPF programs on the kernel-side is fairly hard to follow. It related to samples/bpf/bpf_helpers.h
and maps into kernel/bpf/helpers.c via macros.

/* eBPF program helpers */
void *bpf_map_lookup_elem(void *map, void *key);
int bpf_map_update_elem(void *map, void *key, void *value, unsigned long long flags);
int bpf_map_delete_elem(void *map, void *key);

The eBPF-program running kernel-side interacts more directly with the map data structures. For example the
call bpf_map_lookup_elem() returns a direct pointer to the ‘value’ memory-element inside the kernel (while
userspace gets a copy). This allows the eBPF-program to atomically increment or decrement the value ‘in-place’,
by using appropiate compiler primitives like __sync_fetch_and_add(), which is understood by LLVM when
generating eBPF instructions.

Todo:

1. describe how verifier validate map access to be safe.

2. describe int return codes of bpf_map_update_elem + bpf_map_delete_elem.

34 Chapter 5. eBPF - extended Berkeley Packet Filter

http://man7.org/linux/man-pages/man2/bpf.2.html
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/bpf.c
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/syscall.c
http://lxr.free-electrons.com/ident?i=map_lookup_elem
http://lxr.free-electrons.com/ident?i=map_lookup_elem
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/bpf_helpers.h
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/helpers.c


Prototype Kernel Documentation, Release 0.0.1

Export map to filesystem

When Interacting with maps from Userspace a file descriptor is needed. There are two methods for sharing this file
descriptor.

1. By passing it over Unix-domain sockets.

2. Exporting the map to a special bpf filesystem.

Option 2, exporting or pinning the map through the filesystem is more convenient and easier than option 1. Thus, this
document will focus on option 2.

Todo: Describe the API for bpf_obj_pin and bpf_obj_get. Usage examples available in XDP blacklist for
bpf_obj_pin() and XDP blacklist cmdline tool show use of bpf_obj_get().

Todo: add link to Daniel’s TC example of using Unix-domain sockets.

5.2.2 Types of eBPF maps

This document describes the different types of eBPF maps available, and goes into details about the individual map
types. The purpose is to help choose the right type based on the individual use-case. Creating and interacting with
maps are described in another document here: eBPF maps.

The different types of maps available, are defined by enum bpf_map_type in include/uapi/linux/bpf.h. These type
definition “names” are needed when creating the map. Example of bpf_map_type, but remember to lookup latest
available maps in the source code.

enum bpf_map_type {
BPF_MAP_TYPE_UNSPEC,
BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,

};

Implementation details

In-order to understand and follow the descriptions of the different map types, in is useful for the reader to understand
how a map type is implemented by the kernel.

On the kernel side, implementing a map type requires defining some function call (pointers) via struct bpf_map_ops.
The eBPF programs (and userspace) have access to the functions calls map_lookup_elem, map_update_elem
and map_delete_elem, which get invoked from eBPF via bpf-helpers in kernel/bpf/helpers.c, or via userspace the
bpf syscall (as described in eBPF maps).

Creating a map requires supplying the following configuration attributes: map_type, key_size, value_size, max_entries
and map_flags.

5.2. Documentation 35

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_user.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_ddos01_blacklist_cmdline.c
http://lingrok.org/search?project=linux-net-next&q=bpf_map_type
http://lxr.free-electrons.com/ident?i=bpf_map_ops
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/kernel/bpf/helpers.c


Prototype Kernel Documentation, Release 0.0.1

BPF_MAP_TYPE_ARRAY

Implementation defined in kernel/bpf/arraymap.c via struct bpf_map_ops array_ops.

As the name BPF_MAP_TYPE_ARRAY indicates, this can be seen as an array. All array elements are pre-allocated
and zero initialized at init time. Key is an index in array and can only be 4 bytes (32-bit). The constant size is defined
by max_entries. This init-time constant also implies bpf_map_delete_elem (array_map_delete_elem) is an invalid
operation.

Optimized for fastest possible lookup. The size is constant for the life of the eBPF program, which allows verifier+JIT
to perform a wider range of optimizations. E.g. array_map_lookup_elem() may be ‘inlined’ by JIT.

Small size gotcha, the value_size is rounded up to 8 bytes.

Example usage BPF_MAP_TYPE_ARRAY, based on samples/bpf/sockex1_kern.c:

struct bpf_map_def SEC("maps") my_map = {
.type = BPF_MAP_TYPE_ARRAY,
.key_size = sizeof(u32),
.value_size = sizeof(long),
.max_entries = 256,

};

u32 index = 42;
long *value;
value = bpf_map_lookup_elem(&my_map, &index);

if (value)
__sync_fetch_and_add(value, 1);

The lookup (from kernel side) bpf_map_lookup_elem() returns a pointer into the array element. To avoid data
races with userspace reading the value, the API-user must use primitives like __sync_fetch_and_add() when
updating the value in-place.

5.2.3 Troubleshooting eBPF

This document should help end-users with troubleshooting their eBPF programs. With a primary focus on programs
under kernels samples/bpf.

Memory ulimits

The eBPF maps uses locked memory, which is default very low. Your program likely need to increase resource limit
RLIMIT_MEMLOCK see system call setrlimit(2).

The bpf_create_map call will return errno EPERM (Operation not permitted) when the RLIMIT_MEMLOCK
memory size limit is exceeded.

Enable bpf JIT

Not seeing the expected performance and perf top showing __bpf_prog_run() as the top CPU consumer.

Did you remember to enable JIT’ing of the BPF code? Like:

$ sysctl net/core/bpf_jit_enable=1
net.core.bpf_jit_enable = 1

36 Chapter 5. eBPF - extended Berkeley Packet Filter

http://lxr.free-electrons.com/source/kernel/bpf/arraymap.c
http://lxr.free-electrons.com/ident?i=array_ops
http://lxr.free-electrons.com/ident?i=array_map_delete_elem
http://lxr.free-electrons.com/ident?i=array_map_lookup_elem
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/samples/bpf/sockex1_kern.c
http://man7.org/linux/man-pages/man2/setrlimit.2.html


Prototype Kernel Documentation, Release 0.0.1

Notice there is both JIT’ing of eBPF and cBPF (Classical BPF) implemented in the kernel per arch. You can see
current cBPF and eBPF JITs that are supported by the kernel via:

$ git grep BPF_JIT | grep select
arch/arm/Kconfig: select HAVE_CBPF_JIT
arch/arm64/Kconfig: select HAVE_EBPF_JIT
arch/mips/Kconfig: select HAVE_CBPF_JIT if !CPU_MICROMIPS
arch/powerpc/Kconfig: select HAVE_CBPF_JIT if !PPC64
arch/powerpc/Kconfig: select HAVE_EBPF_JIT if PPC64
arch/s390/Kconfig: select HAVE_EBPF_JIT if PACK_STACK && HAVE_MARCH_Z196_FEATURES
arch/sparc/Kconfig: select HAVE_CBPF_JIT if SPARC32
arch/sparc/Kconfig: select HAVE_EBPF_JIT if SPARC64
arch/x86/Kconfig: select HAVE_EBPF_JIT if X86_64

Also see Cilium JIT section and BPF sysctl section.

ELF binary

The binary containing the eBPF program, which got generated by the LLVM compiler, is an normal ELF binary. For
samples/bpf/ this is the file named xxx_kern.o. It is possible to inspect this normal ELF file, with tools like readelf
or llvm-objdump.

$ llvm-objdump -h xdp_ddos01_blacklist_kern.o

xdp_ddos01_blacklist_kern.o: file format ELF64-unknown

Sections:
Idx Name Size Address Type
0 00000000 0000000000000000
1 .strtab 00000072 0000000000000000
2 .text 00000000 0000000000000000 TEXT DATA
3 xdp_prog 000001b8 0000000000000000 TEXT DATA
4 .relxdp_prog 00000020 0000000000000000
5 maps 00000028 0000000000000000 DATA
6 license 00000004 0000000000000000 DATA
7 .symtab 000000d8 0000000000000000

From the above output some trivial information can be extracted. This is an XDP program, as the defined program
section Idx 3 starts with the letters “xdp”. From the same line the size column also show the program size in hex 0001b8
equal 440 bytes, or 55 bpf instructions, as each insns is 8 bytes (see struct bpf_insn) (shell trick echo $((0x1b8))
insns=$((0x1b8 / 8))). Do notice this size is not the JIT’ed program size.

The loader code samples/bpf/bpf_load.c parse this elf file, extract needed program sections, uses the maps section and
relocation section (here .relxdp_prog ) to remap the BPF_PSEUDO_MAP_FD instruction to point to the correct map
(which gets created during parsing of the maps section, via standard bpf-syscall bpf_create_map).

LLVM disassemble support

Todo: Document what LLVM version this “-S” option got added

In newer versions of LLVM, the tool llvm-objdump, supports showing section names, asm code and original C
code, if compiled with -g.

5.2. Documentation 37

http://cilium.readthedocs.io/en/latest/bpf/#jit
http://cilium.readthedocs.io/en/latest/bpf/#bpf-sysctls.
http://lxr.free-electrons.com/ident?i=bpf_insn


Prototype Kernel Documentation, Release 0.0.1

llvm-objdump -S prog_kern.o

Todo: What does the option -no-show-raw-insn do?

See Cilium Toolchain LLVM section for more details.

Extracting eBPF-JIT code

Also see Cilium JIT Debugging.

For debugging/seeing the generated JIT code, is it possible to change this proc sysctl:

sysctl net.core.bpf_jit_enable=2

The output looks like:

flen=55 proglen=335 pass=4 image=ffffffffa0006820 from=xdp_ddos01_blac pid=13333
JIT code: 00000000: 55 48 89 e5 48 81 ec 28 02 00 00 48 89 9d d8 fd
JIT code: 00000010: ff ff 4c 89 ad e0 fd ff ff 4c 89 b5 e8 fd ff ff
JIT code: 00000020: 4c 89 bd f0 fd ff ff 31 c0 48 89 85 f8 fd ff ff
JIT code: 00000030: bb 02 00 00 00 48 8b 77 08 48 8b 7f 00 48 89 fa
JIT code: 00000040: 48 83 c2 0e 48 39 f2 0f 87 e1 00 00 00 48 0f b6
JIT code: 00000050: 4f 0c 48 0f b6 57 0d 48 c1 e2 08 48 09 ca 48 89
JIT code: 00000060: d1 48 81 e1 ff 00 00 00 41 b8 06 00 00 00 49 39
JIT code: 00000070: c8 0f 87 b7 00 00 00 48 81 fa 88 a8 00 00 74 0e
JIT code: 00000080: b9 0e 00 00 00 48 81 fa 81 00 00 00 75 1a 48 89
JIT code: 00000090: fa 48 83 c2 12 48 39 f2 0f 87 90 00 00 00 b9 12
JIT code: 000000a0: 00 00 00 48 0f b7 57 10 bb 02 00 00 00 48 81 e2
JIT code: 000000b0: ff ff 00 00 48 83 fa 08 75 49 48 01 cf 31 db 48
JIT code: 000000c0: 89 fa 48 83 c2 14 48 39 f2 77 38 8b 7f 0c 89 7d
JIT code: 000000d0: fc 48 89 ee 48 83 c6 fc 48 bf 00 9c 24 5f 07 88
JIT code: 000000e0: ff ff e8 29 cd 13 e1 bb 02 00 00 00 48 83 f8 00
JIT code: 000000f0: 74 11 48 8b 78 00 48 83 c7 01 48 89 78 00 bb 01
JIT code: 00000100: 00 00 00 89 5d f8 48 89 ee 48 83 c6 f8 48 bf c0
JIT code: 00000110: 76 12 13 04 88 ff ff e8 f4 cc 13 e1 48 83 f8 00
JIT code: 00000120: 74 0c 48 8b 78 00 48 83 c7 01 48 89 78 00 48 89
JIT code: 00000130: d8 48 8b 9d d8 fd ff ff 4c 8b ad e0 fd ff ff 4c
JIT code: 00000140: 8b b5 e8 fd ff ff 4c 8b bd f0 fd ff ff c9 c3

The proglen is the len of opcode sequence generated and flen is the number of bpf insns. You can use
tools/net/bpf_jit_disasm.c to disassemble that output. bpf_jit_disasm -o will dump the related opcodes as well.

Perf tool symbols

For JITed progs, you can do sysctl net/core/bpf_jit_kallsyms=1 and f.e. perf script –kallsyms=/proc/kallsyms to show
them based on the tag:

sysctl net/core/bpf_jit_kallsyms=1

Detail see commit: https://git.kernel.org/torvalds/c/74451e66d516c55e3

Remember to use the perf command-line option –kallsyms=/proc/kallsyms to get the symobols resolved, like:

38 Chapter 5. eBPF - extended Berkeley Packet Filter

http://cilium.readthedocs.io/en/latest/bpf/#jit-debugging
http://cilium.readthedocs.io/en/latest/bpf/#jit-debugging
https://git.kernel.org/torvalds/c/74451e66d516c55e3


Prototype Kernel Documentation, Release 0.0.1

# perf report --no-children --kallsyms=/proc/kallsyms

5.2.4 BCC (BPF Compiler Collection)

BCC is a toolkit to make eBPF programs easier to write, with front-ends in Python and Lua. BCC requires LLVM
and clang (in version 3.7.1 or newer) to be available on target, because BCC programs do runtime compilation of the
restricted-C code into eBPF instructions.

BCC includes several useful tools and examples, developed by recognized performance analyst Brendan Gregg and
covered with a tutorial and slides.

The project maintains an overview of eBPF supported kernels and what versions got which specific features. There is
also a BCC Reference Guide.

5.2. Documentation 39

https://github.com/iovisor/bcc/tree/master/tools
https://github.com/iovisor/bcc/tree/master/examples
http://www.brendangregg.com/
https://github.com/iovisor/bcc/blob/master/docs/tutorial.md
http://www.slideshare.net/brendangregg/linux-bpf-superpowers/43/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md
https://github.com/iovisor/bcc/blob/master/docs/reference_guide.md


Prototype Kernel Documentation, Release 0.0.1

40 Chapter 5. eBPF - extended Berkeley Packet Filter



CHAPTER 6

Blogposts, Reports and Write-ups

This documentation area is used for publishing reports and write-ups of my work, which I find relevant for other
people. This will closely resemble previous my blogposts. Hoping using this rst-text format will make it less of an
hassle to publish my work. (This directory is not intented to be integrated with the kernels documentation tree).

Contents:

6.1 Eval Generic netstack XDP patch

Authors Jesper Dangaard Brouer

Version 1.0.1

Date 2017-04-24 Mon

Updated 2017-06-08

Given XDP works at the driver level, developing and testing XDP programs requires access to specific NIC hardware. . .
but this is about to change in kernel v4.12.

UPDATE (2017-06-08): The mentioned/evaluated patches have been accepted and will appear in kernel
release v4.12

To ease developing and testing XDP programs, a generic netstack-XDP patch proposal (PATCH V3 and PATCH V4)
have been posted. This allow for attaching XDP programs to any net_device. If the driver doesn’t support native XDP,
the XDP eBPF program gets attached further inside the network stack. This is obviously slower and loses the XDP
benefit of skipping the SKB allocation.

The generic netstack-XDP patchset is NOT targetted high performance, but instead for making it easier to test and
develop XDP programs.

That said, this does provide an excellent opportunity for comparing performance between NIC-level-XDP and
netstack-XDP. This provides the ability to do what I call zoom-in-benchmarking of the network stack facilities, that
the NIC-XDP programs avoid. Thus, allowing us to quantify the cost of these facilities.

Special note for the KVM driver virtio_net:

41

https://netoptimizer.blogspot.dk/
https://git.kernel.org/torvalds/c/b5cdae3291f7
http://lkml.kernel.org/r/20170412.145415.1441440342830198148.davem@davemloft.net
http://lkml.kernel.org/r/20170413.120925.2082322246776478766.davem@davemloft.net


Prototype Kernel Documentation, Release 0.0.1

XDP support have been added to KVM via the virtio_net driver, but unfortunately it is a hassle to configure
(given it requires disabling specific options, which are default enabled).

6.1.1 Benchmark program

The XDP program used is called: xdp_bench01_mem_access_cost and is available in the prototype kernel
samples/bpf directory as xdp_bench01_mem_access_cost_kern.c and _user.c.

UPDATE (2017-06-08): The xdp_bench01_mem_access_cost program have gotten an option
called --skb-mode, which will force using “Generic XDP” even on interfaces that do support XDP
natively. This is practical for doing this kind of comparison as described in the document.

6.1.2 Baseline testing with NIC-level XDP

First establish a baseline for the performance of NIC-level XDP. This will serve as baseline against the patch being
evaluated. The packet generator machine is running pktgen_sample03_burst_single_flow.sh, which implies these tests
are single CPU RX performance, as the UDP flow will hit a single hardware RX-queue, and thus only activate a single
CPU.

Baseline with mlx5 on a Skylake CPU: Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz.

Network card (NIC) hardware: NIC: ConnectX-4 Dual 100Gbit/s, driver mlx5. Machines connected back-to-back
with Ethernet-flow control disabled.

Dropping packet without touching the packet data (thus avoiding cache-miss) have a huge effect on my system. HW
indicate via PMU counter LLC-load-misses that DDIO is working on my system, but the L3-to-L1 cache-line miss is
causing the CPU to stall:

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2

XDP_action pps pps-human-readable mem
XDP_DROP 19851067 19,851,067 no_touch
XDP_DROP 19803663 19,803,663 no_touch (**used in examples**)
XDP_DROP 19795927 19,795,927 no_touch
XDP_DROP 19792161 19,792,161 no_touch
XDP_DROP 19792109 19,792,109 no_touch

I have previously posted patches to the mlx5 and mlx4 driver, that prefetch packet-data into L2, and avoid this cache
stall, and I can basically achieve same result as above, even when reading data. Mellanox have taken over these
patches, but they are stalling on that on newer E5-26xx v4 CPUs this prefetch already happens in HW.

This is a more realistic XDP_DROP senario where we touch packet data before dropping it (causes cache miss from
L3):

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read

XDP_action pps pps-human-readable mem
XDP_DROP 11972515 11,972,515 read
XDP_DROP 12006685 12,006,685 read (**used in examples**)
XDP_DROP 12004640 12,004,640 read
XDP_DROP 11997837 11,997,837 read
XDP_DROP 11998538 11,998,538 read
^CInterrupted: Removing XDP program on ifindex:5 device:mlx5p2

An interesting observation and take-ways from these two measurements is that this cache-miss cost approx 32ns
((1/12006685-1/19803663)*10^9).

42 Chapter 6. Blogposts, Reports and Write-ups

https://marc.info/?l=xdp-newbies&m=149486931113651&w=2
https://github.com/netoptimizer/prototype-kernel/tree/master/kernel/samples/bpf
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_bench01_mem_access_cost_kern.c
https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/samples/bpf/xdp_bench01_mem_access_cost_user.c
https://github.com/torvalds/linux/blob/master/samples/pktgen/pktgen_sample03_burst_single_flow.sh


Prototype Kernel Documentation, Release 0.0.1

For the XDP_TX test to be correct, it is important to swap MAC-addrs else the NIC HW will not transmit this to the
wire (I verified this was actually TX’ed to the wire):

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_TX --dev mlx5p2 --read

XDP_action pps pps-human-readable mem
XDP_TX 10078899 10,078,899 read
XDP_TX 10109107 10,109,107 read
XDP_TX 10107393 10,107,393 read
XDP_TX 10107946 10,107,946 read
XDP_TX 10109020 10,109,020 read

6.1.3 Testing with network stack generic XDP

This test is based on PATCH V4 after adjusting the patch according to the email thread, and and validated XDP_TX
can send packets on wire.

Netstack XDP_DROP

As expected there is no difference in letting the XDP prog touch/read packet-data vs “no_touch”, because we can-
not avoid touching given the XDP/eBPF hook happens much later in the network stack. As can be seen by these
benchmarks:

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2

XDP_action pps pps-human-readable mem
XDP_DROP 8438488 8,438,488 no_touch
XDP_DROP 8423788 8,423,788 no_touch
XDP_DROP 8425617 8,425,617 no_touch
XDP_DROP 8421396 8,421,396 no_touch
XDP_DROP 8432846 8,432,846 no_touch
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

The drop numbers are good, for the netstack but some distance to the 12,006,685 pps of XDP running on in-the-NIC.
Percentage-wise it looks big a reduction of approx 30%. But nanosec difference is it “only” (1/12006685*10^9)-
(1/8413417*10^9) = -35.57 ns

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read

XDP_action pps pps-human-readable mem
XDP_DROP 8415835 8,415,835 read
XDP_DROP 8413417 8,413,417 read
XDP_DROP 8236525 8,236,525 read
XDP_DROP 8410996 8,410,996 read
XDP_DROP 8412015 8,412,015 read
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

Do notice, that reaching around 8Mpps is a very good result for the normal networks stack, because 100Gbit/s with
large MTU size frames (1536 bytes due to overheads) corresponds to 8,138,020 pps ((100*10^9)/(1536*8)). The
above test is with small 64bytes packets, and the generator sending 40Mpps (can be tuned to 65Mpps).

Below perf-stat for this generic netstack-XDP_DROP test, show a high (2.01) insn per cycle indicate that it is function-
ing fairly optimal, and we likely cannot find any “magic” trick as the CPU does not seem to be stalling on something:

6.1. Eval Generic netstack XDP patch 43

http://lkml.kernel.org/r/20170413.120925.2082322246776478766.davem@davemloft.net


Prototype Kernel Documentation, Release 0.0.1

$ sudo ~/perf stat -C7 -e L1-icache-load-misses -e cycles:k \
-e instructions:k -e cache-misses:k -e cache-references:k \
-e LLC-store-misses:k -e LLC-store -e LLC-load-misses:k \
-e LLC-load -r 4 sleep 1

Performance counter stats for 'CPU(s) 7' (4 runs):

349,830 L1-icache-load-misses ( +- 0.53% ) (33.31%)
3,989,134,732 cycles:k ( +- 0.06% ) (44.50%)
8,016,054,916 instructions:k # 2.01 insn per cycle (+- 0.02%) (55.62%)

31,843,544 cache-misses:k # 17.337 % of all cache refs (+- 0.04%) (66.71%)
183,671,576 cache-references:k ( +- 0.03% ) (66.71%)
1,190,204 LLC-store-misses ( +- 0.29% ) (66.71%)

17,376,723 LLC-store ( +- 0.04% ) (66.69%)
55,058 LLC-load-misses ( +- 0.07% ) (22.19%)

3,056,972 LLC-load ( +- 0.13% ) (22.19%)

Netstack XDP_TX

When testing XDP_TX it is important to verify that packets are actually transmitted. This is because the NIC HW can
choose to drop invalid packets, which changes the performance profile and your results.

Generic netstack-XDP_TX verified actually hitting wire. The slowdown is higher than expected. Maybe we are
stalling on the tairptr/doorbell update on TX???

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_TX --dev mlx5p2 --read

XDP_action pps pps-human-readable mem
XDP_TX 4577542 4,577,542 read
XDP_TX 4484903 4,484,903 read
XDP_TX 4571821 4,571,821 read
XDP_TX 4574512 4,574,512 read
XDP_TX 4574424 4,574,424 read (**use in examples**)
XDP_TX 4575712 4,575,712 read
XDP_TX 4505569 4,505,569 read
^CInterrupted: Removing XDP program on ifindex:7 device:mlx5p2

Below perf-stat for generic netstack-XDP_TX, show a lower (1.51) insn per cycle, indicate that the system is stalling
on something

$ sudo ~/perf stat -C7 -e L1-icache-load-misses -e cycles:k \
-e instructions:k -e cache-misses:k -e cache-references:k \
-e LLC-store-misses:k -e LLC-store -e LLC-load-misses:k \
-e LLC-load -r 4 sleep 1

Performance counter stats for 'CPU(s) 7' (4 runs):

518,261 L1-icache-load-misses ( +- 0.58% ) (33.30%)
3,989,223,247 cycles:k ( +- 0.01% ) (44.49%)
6,017,445,820 instructions:k # 1.51 insn per cycle (+- 0.31%) (55.62%)

26,931,778 cache-misses:k # 10.930 % of all cache refs (+- 0.05%) (66.71%)
246,406,110 cache-references:k ( +- 0.19% ) (66.71%)
1,317,850 LLC-store-misses ( +- 2.93% ) (66.71%)

30,028,771 LLC-store ( +- 0.88% ) (66.70%)
72,146 LLC-load-misses ( +- 0.22% ) (22.19%)

12,426,426 LLC-load ( +- 2.12% ) (22.19%)

44 Chapter 6. Blogposts, Reports and Write-ups



Prototype Kernel Documentation, Release 0.0.1

Perf details for netstack XDP_TX

My first though is that there is a high probability that this could be the tairptr/doorbell update. Looking at perf report
something else lights up, which could still be the tailptr, as it stalls on the next lock operation

Samples: 25K of event 'cycles', Event count (approx.): 25790301710
Overhead Symbol

+ 24.75% [k] mlx5e_handle_rx_cqe
+ 16.95% [k] __build_skb
+ 10.72% [k] mlx5e_xmit
+ 7.03% [k] build_skb
+ 5.31% [k] mlx5e_alloc_rx_wqe
+ 2.99% [k] kmem_cache_alloc
+ 2.65% [k] ___slab_alloc
+ 2.65% [k] _raw_spin_lock
+ 2.52% [k] bpf_prog_662b9cae761bf6ab
+ 2.37% [k] netif_receive_skb_internal
+ 1.92% [k] memcpy_erms
+ 1.73% [k] generic_xdp_tx
+ 1.69% [k] mlx5e_get_cqe
+ 1.40% [k] __netdev_pick_tx
+ 1.28% [k] __rcu_read_unlock
+ 1.19% [k] netdev_pick_tx
+ 1.02% [k] swiotlb_map_page
+ 1.00% [k] __cmpxchg_double_slab.isra.56
+ 0.99% [k] dev_gro_receive
+ 0.85% [k] __rcu_read_lock
+ 0.80% [k] napi_gro_receive
+ 0.79% [k] mlx5e_poll_rx_cq
+ 0.73% [k] mlx5e_post_rx_wqes
+ 0.71% [k] get_partial_node.isra.76
+ 0.70% [k] mlx5e_page_release
+ 0.62% [k] eth_type_trans
+ 0.56% [k] mlx5e_select_queue

0.49% [k] skb_gro_reset_offset
0.42% [k] skb_put

Packet rate 4574424 translates to ~219 nanosec (1/4574424*10^9).

The top contender is mlx5e_handle_rx_cqe(24.75%), which initially didn’t surprise me, given I know that this function
(via inlining) will be the first to touch the packet (via is_first_ethertype_ip()), thus causing a cache-line miss. BUT
something is wrong. Looking at perf-annotate, the cache-line miss is NOT occurring, instead 67.24% CPU time spend
on a refcnt increment (due to page_ref_inc(di->page) used for page-recycle cache). Something is wrong as 24.75%
of 219 is 54ns, which is too high even for an atomic refcnt inc. (Note: the cache-miss is actually avoided due to the
prefetch have time to work, due to this stall on the lock. Thus, removing the stall will bring-back the cache-line stall).

Inside __build_skb(16.95%) there is 83.47% CPU spend on “rep stos”, which is clearing/memset-zero the SKB
itself. Again something is wrong as ((1/4574424*10^9)*(16.95/100)) = 37ns is too high for clearing the SKB
(time_bench_memset show this optimally takes 10 ns).

Inside mlx5e_xmit(10.72%) there is 17.96% spend on a sfence asm instruction. The cost
(1/4574424*10^9)*(10.72/100) = 23.43 ns of calling mlx5e_xmit() might not be too off-target.

My guess is that this is caused the the tailptr/doorbell stall. And doing bulk/xmit_more we can likely reduce
mlx5e_handle_rx_cqe(-12ns as cache-miss returns) and __build_skb(-27ns). Thus, the performance target should
lay around 5.6Mpps ((1/(218-12-27)*10^9) = 5586592).

Also notice that __cmpxchg_double_slab() show that we are hitting the SLUB slow(er)-path.

6.1. Eval Generic netstack XDP patch 45



Prototype Kernel Documentation, Release 0.0.1

Zooming into perf with Generic-netstack-XDP

Testing Generic-netstack-XDP_DROP again and looking closer at the perf reports. This will be intersting because we
can deduct the cost of the different parts of the network stack, assuming there is no-fake stalls due to tailptr/doorbell
(like the XDP_TX case)

[jbrouer@skylake prototype-kernel]$
sudo ./xdp_bench01_mem_access_cost --action XDP_DROP --dev mlx5p2 --read

XDP_action pps pps-human-readable mem
XDP_DROP 8148835 8,148,835 read
XDP_DROP 8148972 8,148,972 read
XDP_DROP 8148962 8,148,962 read
XDP_DROP 8146856 8,146,856 read
XDP_DROP 8150026 8,150,026 read
XDP_DROP 8149734 8,149,734 read
XDP_DROP 8149646 8,149,646 read

For some unknown reason the Generic-XDP_DROP number are a bit lower, than above numbers. Using 8148972 pps
(8,148,972) as our new baseline, show (averaged) cost per packet 122.47 nanosec (1/8165032*10^9)

The difference to NIC-level-XDP is: (1/12006685*10^9)- (1/8148972*10^9) = -39.42 ns

Simply perf recorded 30 sec, and find the CPU this was running on by added the –sort cpu to the output. The CPU
output/column showed that NAPI was running on CPU 7

sudo ~/perf record -aR -g sleep 30
sudo ~/perf report --no-children --sort cpu,comm,dso,symbol

Now we will drill down on CPU 7 and see what it is doing. We start with removing the “children” column, to start
viewing the overhead on a per function basis.

I’m using this long perf report command to reduce the columns and print to stdout and removing the call graph (I’ll
manually inspect the call-graph with the standard terminal-user-interface (TUI))

sudo ~/perf report --no-children --sort symbol \
--kallsyms=/proc/kallsyms -C7 --stdio -g none

Reduced output:

# Samples: 119K of event 'cycles'
# Event count (approx.): 119499252009
#
# Overhead Symbol
# ........ ..........................................
#

34.33% [k] mlx5e_handle_rx_cqe
10.36% [k] __build_skb
5.49% [k] build_skb
5.10% [k] page_frag_free
4.06% [k] bpf_prog_662b9cae761bf6ab
4.02% [k] kmem_cache_alloc
3.85% [k] netif_receive_skb_internal
3.72% [k] kmem_cache_free
3.69% [k] mlx5e_alloc_rx_wqe
2.91% [k] mlx5e_get_cqe
1.83% [k] napi_gro_receive
1.80% [k] __rcu_read_unlock
1.65% [k] skb_release_data

(continues on next page)

46 Chapter 6. Blogposts, Reports and Write-ups



Prototype Kernel Documentation, Release 0.0.1

(continued from previous page)

1.49% [k] dev_gro_receive
1.43% [k] skb_release_head_state
1.26% [k] mlx5e_post_rx_wqes
1.22% [k] mlx5e_page_release
1.21% [k] kfree_skb
1.19% [k] eth_type_trans
1.00% [k] __rcu_read_lock
0.84% [k] skb_release_all
0.83% [k] skb_free_head
0.81% [k] kfree_skbmem
0.80% [k] percpu_array_map_lookup_elem
0.79% [k] mlx5e_poll_rx_cq
0.79% [k] skb_put
0.77% [k] skb_gro_reset_offset
0.63% [k] swiotlb_sync_single
0.61% [k] swiotlb_sync_single_for_device
0.42% [k] swiotlb_sync_single_for_cpu
0.28% [k] net_rx_action
0.21% [k] bpf_map_lookup_elem
0.20% [k] mlx5e_napi_poll
0.11% [k] __do_softirq
0.06% [k] mlx5e_poll_tx_cq
0.02% [k] __raise_softirq_irqoff

Some memory observations are that we are hitting the fast path of the SLUB allocator (indicated by no func names
from the slower path). The mlx5 driver-page recycler also have 100% hit rate, verified by looking at ethtool -S stats,
and mlx5 stats “cache_reuse”, using my ethtool_stats.pl tool:

Show adapter(s) (mlx5p2) statistics (ONLY that changed!)
Ethtool(mlx5p2) stat: 8179636 ( 8,179,636) <= rx3_cache_reuse /sec
Ethtool(mlx5p2) stat: 8179632 ( 8,179,632) <= rx3_packets /sec
Ethtool(mlx5p2) stat: 40657800 ( 40,657,800) <= rx_64_bytes_phy /sec
Ethtool(mlx5p2) stat: 490777805 ( 490,777,805) <= rx_bytes /sec
Ethtool(mlx5p2) stat: 2602103605 ( 2,602,103,605) <= rx_bytes_phy /sec
Ethtool(mlx5p2) stat: 8179636 ( 8,179,636) <= rx_cache_reuse /sec
Ethtool(mlx5p2) stat: 8179630 ( 8,179,630) <= rx_csum_complete /sec
Ethtool(mlx5p2) stat: 18736623 ( 18,736,623) <= rx_discards_phy /sec
Ethtool(mlx5p2) stat: 13741170 ( 13,741,170) <= rx_out_of_buffer /sec
Ethtool(mlx5p2) stat: 8179630 ( 8,179,630) <= rx_packets /sec
Ethtool(mlx5p2) stat: 40657861 ( 40,657,861) <= rx_packets_phy /sec
Ethtool(mlx5p2) stat: 2602122863 ( 2,602,122,863) <= rx_prio0_bytes /sec
Ethtool(mlx5p2) stat: 21921459 ( 21,921,459) <= rx_prio0_packets /sec
[...]

Knowing the cost per packet 122.47 nanosec (1/8165032*10^9), we can extrapolate the ns used by each function call.
Let use oneline for calculating that for us:

sudo ~/perf report --no-children --sort symbol \
--kallsyms=/proc/kallsyms -C7 --stdio -g none | \

awk -F% 'BEGIN {base=(1/8165032*10^9)} \
/%/ {ns=base*($1/100); \

printf("%6.2f\% => %5.1f ns func:%s\n",$1,ns,$2);}'

Output:

34.33% => 42.0 ns func: [k] mlx5e_handle_rx_cqe

(continues on next page)

6.1. Eval Generic netstack XDP patch 47

https://github.com/netoptimizer/network-testing/blob/master/bin/ethtool_stats.pl


Prototype Kernel Documentation, Release 0.0.1

(continued from previous page)

10.36% => 12.7 ns func: [k] __build_skb
5.49% => 6.7 ns func: [k] build_skb
5.10% => 6.2 ns func: [k] page_frag_free
4.06% => 5.0 ns func: [k] bpf_prog_662b9cae761bf6ab
4.02% => 4.9 ns func: [k] kmem_cache_alloc
3.85% => 4.7 ns func: [k] netif_receive_skb_internal
3.72% => 4.6 ns func: [k] kmem_cache_free
3.69% => 4.5 ns func: [k] mlx5e_alloc_rx_wqe
2.91% => 3.6 ns func: [k] mlx5e_get_cqe
1.83% => 2.2 ns func: [k] napi_gro_receive
1.80% => 2.2 ns func: [k] __rcu_read_unlock
1.65% => 2.0 ns func: [k] skb_release_data
1.49% => 1.8 ns func: [k] dev_gro_receive
1.43% => 1.8 ns func: [k] skb_release_head_state
1.26% => 1.5 ns func: [k] mlx5e_post_rx_wqes
1.22% => 1.5 ns func: [k] mlx5e_page_release
1.21% => 1.5 ns func: [k] kfree_skb
1.19% => 1.5 ns func: [k] eth_type_trans
1.00% => 1.2 ns func: [k] __rcu_read_lock
0.84% => 1.0 ns func: [k] skb_release_all
0.83% => 1.0 ns func: [k] skb_free_head
0.81% => 1.0 ns func: [k] kfree_skbmem
0.80% => 1.0 ns func: [k] percpu_array_map_lookup_elem
0.79% => 1.0 ns func: [k] mlx5e_poll_rx_cq
0.79% => 1.0 ns func: [k] skb_put
0.77% => 0.9 ns func: [k] skb_gro_reset_offset
0.63% => 0.8 ns func: [k] swiotlb_sync_single
0.61% => 0.7 ns func: [k] swiotlb_sync_single_for_device
0.42% => 0.5 ns func: [k] swiotlb_sync_single_for_cpu
0.28% => 0.3 ns func: [k] net_rx_action
0.21% => 0.3 ns func: [k] bpf_map_lookup_elem
0.20% => 0.2 ns func: [k] mlx5e_napi_poll
0.11% => 0.1 ns func: [k] __do_softirq

top contender mlx5e_handle_rx_cqe

The top contender mlx5e_handle_rx_cqe() in the driver code

34.33% => 42.0 ns func: [k] mlx5e_handle_rx_cqe

When looking at the code/perf-annotate do notice that several function calls have been inlined by the compiler. The
thing that light-up (56.23% => 23.6 ns) in perf-annotate is touching/reading the data-packet for the first time, which is
reading the ethertype via is_first_ethertype_ip(), called via:

• which is called from mlx5e_handle_csum()

• which is called by mlx5e_build_rx_skb()

• which is called by mlx5e_complete_rx_cqe()

• which is called by mlx5e_handle_rx_cqe() all inlined.

Notice this is_first_ethertype_ip() call is the reason why eth_type_trans() is not so hot in this driver.

48 Chapter 6. Blogposts, Reports and Write-ups



Prototype Kernel Documentation, Release 0.0.1

Analyzing __build_skb and memset

The compiler choose not to inline __build_skb(), and what is primarily going on here is memset clearing the SKB
data, which gets optimized into an “rep stos” asm-operation, which is actually not optimal for this size of objects.
Looking at perf-annotate shows that 75.65% of the time of __build_skb() is spend on “rep stos %rax,%es:(%rdi)”.
Thus, extrapolating 12.7 ns (12.7*(75.65/100)) cost of 9.6 ns.

This is very CPU specific how fast or slow this is, but I’ve benchmarked different alternative approaches with
time_bench_memset.c.

Memset benchmarks on this Skylake CPU show that hand-optimizing ASM-coded memset, can reach 8 bytes per
cycles, but only saves approx 2.5 ns or 10 cycles. A more interesting approach would be if we could memset clear a
larger area. E.g. when bulk-allocating SKBs and detecting they belong to the same page and is contiguous in memory.
Benchmarks show that clearing larger areas is more efficient.

Table with memset “rep-stos” size vs bytes-per-cycle efficiency

$ perl -ne 'while(/memset_(\d+) .* elem: (\d+) cycles/g)\
{my $bpc=$1/$2; \
printf("memset %5d bytes cost %4d cycles thus %4.1f bytes-per-cycle\n", \

$1, $2, $bpc);}' memset_test_dmesg

memset 32 bytes cost 4 cycles thus 8.0 bytes-per-cycle
memset 64 bytes cost 29 cycles thus 2.2 bytes-per-cycle
memset 128 bytes cost 29 cycles thus 4.4 bytes-per-cycle
memset 192 bytes cost 35 cycles thus 5.5 bytes-per-cycle
memset 199 bytes cost 35 cycles thus 5.7 bytes-per-cycle
memset 201 bytes cost 39 cycles thus 5.2 bytes-per-cycle
memset 204 bytes cost 40 cycles thus 5.1 bytes-per-cycle
memset 200 bytes cost 39 cycles thus 5.1 bytes-per-cycle
memset 208 bytes cost 39 cycles thus 5.3 bytes-per-cycle
memset 256 bytes cost 36 cycles thus 7.1 bytes-per-cycle
memset 512 bytes cost 40 cycles thus 12.8 bytes-per-cycle
memset 768 bytes cost 47 cycles thus 16.3 bytes-per-cycle
memset 1024 bytes cost 52 cycles thus 19.7 bytes-per-cycle
memset 2048 bytes cost 84 cycles thus 24.4 bytes-per-cycle
memset 4096 bytes cost 148 cycles thus 27.7 bytes-per-cycle
memset 8192 bytes cost 276 cycles thus 29.7 bytes-per-cycle

I’ve already implemented the SLUB bulk-alloc API, and it could be extended with detecting if objects are physically
contiguous for allowing clearing multiple object at the same time. (Notice the SLUB alloc-side fast-path already
delivers object from the same page).

Blaming the children

The nanosec number are getting so small, that we might miss the effect of deep call chains. Thus, lets look at perf
report with the “children” enabled:

Samples: 119K of event 'cycles', Event count (approx.): 119499252009
Children Self Symbol

+ 100.00% 0.00% [k] kthread
+ 100.00% 0.00% [k] ret_from_fork
+ 99.99% 0.01% [k] smpboot_thread_fn
+ 99.98% 0.01% [k] run_ksoftirqd
+ 99.94% 0.11% [k] __do_softirq
+ 99.78% 0.28% [k] net_rx_action

(continues on next page)

6.1. Eval Generic netstack XDP patch 49

https://github.com/netoptimizer/prototype-kernel/blob/master/kernel/lib/time_bench_memset.c


Prototype Kernel Documentation, Release 0.0.1

(continued from previous page)

+ 99.41% 0.20% [k] mlx5e_napi_poll
+ 92.44% 0.79% [k] mlx5e_poll_rx_cq
+ 86.37% 34.33% [k] mlx5e_handle_rx_cqe
+ 29.40% 1.83% [k] napi_gro_receive
+ 24.50% 3.85% [k] netif_receive_skb_internal
+ 19.41% 5.49% [k] build_skb
+ 14.98% 1.21% [k] kfree_skb
+ 14.15% 10.36% [k] __build_skb
+ 9.43% 0.84% [k] skb_release_all
+ 6.97% 1.65% [k] skb_release_data
+ 5.38% 1.26% [k] mlx5e_post_rx_wqes
+ 5.10% 5.10% [k] page_frag_free
+ 4.86% 4.06% [k] bpf_prog_662b9cae761bf6ab
+ 4.30% 3.69% [k] mlx5e_alloc_rx_wqe
+ 4.30% 0.81% [k] kfree_skbmem
+ 4.02% 4.02% [k] kmem_cache_alloc
+ 3.72% 3.72% [k] kmem_cache_free
+ 2.91% 2.91% [k] mlx5e_get_cqe

Lets calculate the ns cost:

$ sudo ~/perf report --children --sort symbol \
--kallsyms=/proc/kallsyms -C7 --stdio -g none | \
awk -F% 'BEGIN {base=(1/8165032*10^9); \

print "Children => nanosec Self Symbol/fucntion\n";} \
/%/ {ns=base*($1/100); \

printf("%6.2f%s => %5.1f ns %s%s func:%s\n",$1,"%",ns,$2,"%",$3);}'

Children => nanosec Self Symbol/fucntion
100.00% => 122.5 ns 0.00% func: [k] kthread
100.00% => 122.5 ns 0.00% func: [k] ret_from_fork
99.99% => 122.5 ns 0.01% func: [k] smpboot_thread_fn
99.98% => 122.4 ns 0.01% func: [k] run_ksoftirqd
99.94% => 122.4 ns 0.11% func: [k] __do_softirq
99.78% => 122.2 ns 0.28% func: [k] net_rx_action
99.41% => 121.8 ns 0.20% func: [k] mlx5e_napi_poll
92.44% => 113.2 ns 0.79% func: [k] mlx5e_poll_rx_cq
86.37% => 105.8 ns 34.33% func: [k] mlx5e_handle_rx_cqe
29.40% => 36.0 ns 1.83% func: [k] napi_gro_receive
24.50% => 30.0 ns 3.85% func: [k] netif_receive_skb_internal
19.41% => 23.8 ns 5.49% func: [k] build_skb
14.98% => 18.3 ns 1.21% func: [k] kfree_skb
14.15% => 17.3 ns 10.36% func: [k] __build_skb
9.43% => 11.5 ns 0.84% func: [k] skb_release_all
6.97% => 8.5 ns 1.65% func: [k] skb_release_data
5.38% => 6.6 ns 1.26% func: [k] mlx5e_post_rx_wqes
5.10% => 6.2 ns 5.10% func: [k] page_frag_free
4.86% => 6.0 ns 4.06% func: [k] bpf_prog_662b9cae761bf6ab
4.30% => 5.3 ns 3.69% func: [k] mlx5e_alloc_rx_wqe
4.30% => 5.3 ns 0.81% func: [k] kfree_skbmem
4.02% => 4.9 ns 4.02% func: [k] kmem_cache_alloc
3.72% => 4.6 ns 3.72% func: [k] kmem_cache_free
2.91% => 3.6 ns 2.91% func: [k] mlx5e_get_cqe
1.80% => 2.2 ns 1.80% func: [k] __rcu_read_unlock
1.49% => 1.8 ns 1.49% func: [k] dev_gro_receive
1.43% => 1.8 ns 1.43% func: [k] skb_release_head_state
1.22% => 1.5 ns 1.22% func: [k] mlx5e_page_release

(continues on next page)

50 Chapter 6. Blogposts, Reports and Write-ups



Prototype Kernel Documentation, Release 0.0.1

(continued from previous page)

1.19% => 1.5 ns 1.19% func: [k] eth_type_trans
1.00% => 1.2 ns 1.00% func: [k] __rcu_read_lock
0.84% => 1.0 ns 0.83% func: [k] skb_free_head
0.80% => 1.0 ns 0.80% func: [k] percpu_array_map_lookup_elem
0.79% => 1.0 ns 0.79% func: [k] skb_put
0.77% => 0.9 ns 0.77% func: [k] skb_gro_reset_offset

Interesting here is napi_gro_receive() which is the base-call into the network stack, everything “under” this call cost
29.40% of the time, translated to 36.0 ns. This 36 ns cost is interesting as we calculated the difference to NIC-level-
XDP to be 39 ns:

The difference to NIC-level-XDP is: (1/12006685*10^9)- (1/8148972*10^9) = -39.42 ns

Freeing the SKB is summed up under kfree_skb() with 14.98% => 18.3 ns. In this case kfree_skb() should get
attributed under napi_gro_receive(), due to the direct kfree_skb(skb) call in netif_receive_generic_xdp(). In other
situations kfree_skb() happens during the DMA TX completion, but not here.

Creating, allocating and clearing the SKB is all “under” the build_skb() call, which attributes to a collective 19.41%
or 23.8 ns. The build_skb() call happens, in-driver, before calling napi_gro_receive.

Thus, one might be lead to conclude that the overhead of the network stack is (23.8 ns +36 ns) 59.8 ns, but something
is not adding up as this is higher the calculated approx 40ns difference to NIC-level-XDP.

6.1. Eval Generic netstack XDP patch 51



Prototype Kernel Documentation, Release 0.0.1

52 Chapter 6. Blogposts, Reports and Write-ups



CHAPTER 7

Indices and tables

• genindex

• search

53


	Documentation
	Compiling

	Prototype Kernel
	XDP and eBPF
	Prototype Kernel own documentation

	Linux Networking Subsystem
	XDP - eXpress Data Path

	Linux Memory Management Subsystem
	The page_pool documentation

	eBPF - extended Berkeley Packet Filter
	Introduction
	Documentation

	Blogposts, Reports and Write-ups
	Eval Generic netstack XDP patch

	Indices and tables

